Likelihood relations and stochastic preferences

We define the concept of a qualitative, non-numerical relative likelihood relation, to capture the intuition that “it is at least as likely that a is preferred to b, as that c is preferred to d.” We provide necessary and sufficient conditions for this concept to be a basis for the numerical concept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2016-01, Vol.62, p.28-35
Hauptverfasser: Richter, Marcel K., Wong, Kam-Chau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 28
container_title Journal of mathematical economics
container_volume 62
creator Richter, Marcel K.
Wong, Kam-Chau
description We define the concept of a qualitative, non-numerical relative likelihood relation, to capture the intuition that “it is at least as likely that a is preferred to b, as that c is preferred to d.” We provide necessary and sufficient conditions for this concept to be a basis for the numerical concept of a stochastic preference, which is a numerical probability measure on the set of deterministic preferences. As a qualitative comparison of comparisons, the concept has many interpretations and applications, including measurement of dissimilarity, characterization of non-transitive binary relations, and others.
doi_str_mv 10.1016/j.jmateco.2015.10.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765602584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406815001275</els_id><sourcerecordid>1765602584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-76b807c908311372e05a3ac50c187d6800d972b2e826b5b23a7d4bb46f255dc3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVjw4mW3k-_0JCJ-QcFL7yGbpDTrdlOTreC_N0t78uJp4OWZ4Z0HoVsMDQYsFl3T7czobWwIYF6yBmB5hmZYSVpjTtU5mgEFVjMQ6hJd5dwBgJSgZmixCp--D9sYXZV8b8YQh1yZwVV5jHZr8hhstU9-45MfrM_X6GJj-uxvTnOO1i_P66e3evXx-v70uKoto2yspWgVSLsERTGmknjghhrLwZZSTigAt5SkJV4R0fKWUCMda1smNoRzZ-kc3R_P7lP8Ovg86l3I1ve9GXw8ZI2l4AIIV6ygd3_QLh7SUMpNFGaKU4YLxY-UTTHn8o_ep7Az6Udj0JNF3emTRT1ZnOJisew9HPd8efY7-KSzDZMJF5K3o3Yx_HPhF0uNe7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761485341</pqid></control><display><type>article</type><title>Likelihood relations and stochastic preferences</title><source>Elsevier ScienceDirect Journals</source><creator>Richter, Marcel K. ; Wong, Kam-Chau</creator><creatorcontrib>Richter, Marcel K. ; Wong, Kam-Chau</creatorcontrib><description>We define the concept of a qualitative, non-numerical relative likelihood relation, to capture the intuition that “it is at least as likely that a is preferred to b, as that c is preferred to d.” We provide necessary and sufficient conditions for this concept to be a basis for the numerical concept of a stochastic preference, which is a numerical probability measure on the set of deterministic preferences. As a qualitative comparison of comparisons, the concept has many interpretations and applications, including measurement of dissimilarity, characterization of non-transitive binary relations, and others.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2015.10.009</identifier><identifier>CODEN: JMECDA</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Comparative analysis ; Dissimilarity ; Likelihood ; Non-transitive preference ; Numerical analysis ; Probability ; Qualitative analysis ; Quaternary relation ; Stochastic models ; Stochastic preference</subject><ispartof>Journal of mathematical economics, 2016-01, Vol.62, p.28-35</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-76b807c908311372e05a3ac50c187d6800d972b2e826b5b23a7d4bb46f255dc3</citedby><cites>FETCH-LOGICAL-c434t-76b807c908311372e05a3ac50c187d6800d972b2e826b5b23a7d4bb46f255dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304406815001275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><title>Likelihood relations and stochastic preferences</title><title>Journal of mathematical economics</title><description>We define the concept of a qualitative, non-numerical relative likelihood relation, to capture the intuition that “it is at least as likely that a is preferred to b, as that c is preferred to d.” We provide necessary and sufficient conditions for this concept to be a basis for the numerical concept of a stochastic preference, which is a numerical probability measure on the set of deterministic preferences. As a qualitative comparison of comparisons, the concept has many interpretations and applications, including measurement of dissimilarity, characterization of non-transitive binary relations, and others.</description><subject>Comparative analysis</subject><subject>Dissimilarity</subject><subject>Likelihood</subject><subject>Non-transitive preference</subject><subject>Numerical analysis</subject><subject>Probability</subject><subject>Qualitative analysis</subject><subject>Quaternary relation</subject><subject>Stochastic models</subject><subject>Stochastic preference</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVjw4mW3k-_0JCJ-QcFL7yGbpDTrdlOTreC_N0t78uJp4OWZ4Z0HoVsMDQYsFl3T7czobWwIYF6yBmB5hmZYSVpjTtU5mgEFVjMQ6hJd5dwBgJSgZmixCp--D9sYXZV8b8YQh1yZwVV5jHZr8hhstU9-45MfrM_X6GJj-uxvTnOO1i_P66e3evXx-v70uKoto2yspWgVSLsERTGmknjghhrLwZZSTigAt5SkJV4R0fKWUCMda1smNoRzZ-kc3R_P7lP8Ovg86l3I1ve9GXw8ZI2l4AIIV6ygd3_QLh7SUMpNFGaKU4YLxY-UTTHn8o_ep7Az6Udj0JNF3emTRT1ZnOJisew9HPd8efY7-KSzDZMJF5K3o3Yx_HPhF0uNe7o</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Richter, Marcel K.</creator><creator>Wong, Kam-Chau</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201601</creationdate><title>Likelihood relations and stochastic preferences</title><author>Richter, Marcel K. ; Wong, Kam-Chau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-76b807c908311372e05a3ac50c187d6800d972b2e826b5b23a7d4bb46f255dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Comparative analysis</topic><topic>Dissimilarity</topic><topic>Likelihood</topic><topic>Non-transitive preference</topic><topic>Numerical analysis</topic><topic>Probability</topic><topic>Qualitative analysis</topic><topic>Quaternary relation</topic><topic>Stochastic models</topic><topic>Stochastic preference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Marcel K.</creatorcontrib><creatorcontrib>Wong, Kam-Chau</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Marcel K.</au><au>Wong, Kam-Chau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Likelihood relations and stochastic preferences</atitle><jtitle>Journal of mathematical economics</jtitle><date>2016-01</date><risdate>2016</risdate><volume>62</volume><spage>28</spage><epage>35</epage><pages>28-35</pages><issn>0304-4068</issn><eissn>1873-1538</eissn><coden>JMECDA</coden><abstract>We define the concept of a qualitative, non-numerical relative likelihood relation, to capture the intuition that “it is at least as likely that a is preferred to b, as that c is preferred to d.” We provide necessary and sufficient conditions for this concept to be a basis for the numerical concept of a stochastic preference, which is a numerical probability measure on the set of deterministic preferences. As a qualitative comparison of comparisons, the concept has many interpretations and applications, including measurement of dissimilarity, characterization of non-transitive binary relations, and others.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2015.10.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2016-01, Vol.62, p.28-35
issn 0304-4068
1873-1538
language eng
recordid cdi_proquest_miscellaneous_1765602584
source Elsevier ScienceDirect Journals
subjects Comparative analysis
Dissimilarity
Likelihood
Non-transitive preference
Numerical analysis
Probability
Qualitative analysis
Quaternary relation
Stochastic models
Stochastic preference
title Likelihood relations and stochastic preferences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Likelihood%20relations%20and%20stochastic%20preferences&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Richter,%20Marcel%20K.&rft.date=2016-01&rft.volume=62&rft.spage=28&rft.epage=35&rft.pages=28-35&rft.issn=0304-4068&rft.eissn=1873-1538&rft.coden=JMECDA&rft_id=info:doi/10.1016/j.jmateco.2015.10.009&rft_dat=%3Cproquest_cross%3E1765602584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761485341&rft_id=info:pmid/&rft_els_id=S0304406815001275&rfr_iscdi=true