Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis
The thermostable, glucose tolerant β-glucosidase gene (bgl) of Glycoside hydrolase family 1, isolated from Bacillus subtilis, was cloned and overexpressed in Escherichia coli. The bgl has open reading frame of 1407bp, encoding 469 amino acids with predicted molecular weight of 53kDa. The recombinant...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2016-04, Vol.85, p.425-433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | |
container_start_page | 425 |
container_title | International journal of biological macromolecules |
container_volume | 85 |
creator | Chamoli, Shivangi Kumar, Piyush Navani, Naveen Kumar Verma, Ashok Kumar |
description | The thermostable, glucose tolerant β-glucosidase gene (bgl) of Glycoside hydrolase family 1, isolated from Bacillus subtilis, was cloned and overexpressed in Escherichia coli. The bgl has open reading frame of 1407bp, encoding 469 amino acids with predicted molecular weight of 53kDa. The recombinant protein (BGL) was purified 10.76 fold to homogeneity with specific activity of 54.04U/mg and recovery of 38.67%. The purified BGL was optimally active at pH 6.0 and temperature 60°C. The enzyme retained more than 85% of maximum activity after 1h preincubation at 60°C. The kinetic analysis indicated that BGL has highest catalytic efficiency (Kcat/Km) against p-nitrophenyl-β-d-xylopyranoside (654.58mM−1s−1) followed by p-nitrophenyl-β-d-glucopyranoside (292.53mM−1s−1) and p-nitrophenyl-β-d-galactopyranoside (61.17mM−1s−1). The Ki value for glucose and δ-gluconolactone was determined to be 1.9mM and 0.018mM, respectively. The BGL exhibited high tolerance against detergents and organic solvents. The homology modeling revealed that protein has 19 α-helices and 4 β-sheets and adopted (α/β)8 TIM barrel structure. Substrate docking and LigPlot analysis depicted the amino acids of active site involved in hydrogen bonding and hydrophobic interactions with substrates. The efficient BGL secretion with exploration of structural and functional relationship offer vistas for large scale production and various industrial applications. |
doi_str_mv | 10.1016/j.ijbiomac.2016.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1765109618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813016300010</els_id><sourcerecordid>1765109618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7e607bd1d113fe16c40f6cd026c1049c19101def9e5b9efb00cb2cd35857c9283</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1ERbeFV6h85EDCTLLrJDeggoJUqQfgbDnjSfGSxIvtVCyP1QfpM-HVtlw5jebX_8-v-YS4QCgRUL3dlm7bOz8ZKqu8l4AlAD4TK2ybrgCA-rlYAa6xaLGGU3EW4zaraoPtC3FaqaapugpWYvzKFDj5sJf8exc4RufnN5J-mGAocXB_TMqKNLOV1tNPN9_KmBa7l36Qt-NCPnKR_MjBzEk-3BdHzVkTWQ7BT_JDKePSJze6-FKcDGaM_Opxnovvnz5-u_xcXN9cfbl8f11QrdpUNKyg6S1axHpgVLSGQZGFShHCuiPsMgLLQ8ebvuOhB6C-Iltv2k1DXdXW5-L18e4u-F8Lx6QnF4nH0czsl6ixyRygU3iwqqOVgo8x8KB3wU0m7DWCPpDWW_1EWh9Ia0CdSefgxWPH0k9s_8We0GbDu6OB86d3joOO5Hgmti4wJW29-1_HX-iUlVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765109618</pqid></control><display><type>article</type><title>Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Chamoli, Shivangi ; Kumar, Piyush ; Navani, Naveen Kumar ; Verma, Ashok Kumar</creator><creatorcontrib>Chamoli, Shivangi ; Kumar, Piyush ; Navani, Naveen Kumar ; Verma, Ashok Kumar</creatorcontrib><description>The thermostable, glucose tolerant β-glucosidase gene (bgl) of Glycoside hydrolase family 1, isolated from Bacillus subtilis, was cloned and overexpressed in Escherichia coli. The bgl has open reading frame of 1407bp, encoding 469 amino acids with predicted molecular weight of 53kDa. The recombinant protein (BGL) was purified 10.76 fold to homogeneity with specific activity of 54.04U/mg and recovery of 38.67%. The purified BGL was optimally active at pH 6.0 and temperature 60°C. The enzyme retained more than 85% of maximum activity after 1h preincubation at 60°C. The kinetic analysis indicated that BGL has highest catalytic efficiency (Kcat/Km) against p-nitrophenyl-β-d-xylopyranoside (654.58mM−1s−1) followed by p-nitrophenyl-β-d-glucopyranoside (292.53mM−1s−1) and p-nitrophenyl-β-d-galactopyranoside (61.17mM−1s−1). The Ki value for glucose and δ-gluconolactone was determined to be 1.9mM and 0.018mM, respectively. The BGL exhibited high tolerance against detergents and organic solvents. The homology modeling revealed that protein has 19 α-helices and 4 β-sheets and adopted (α/β)8 TIM barrel structure. Substrate docking and LigPlot analysis depicted the amino acids of active site involved in hydrogen bonding and hydrophobic interactions with substrates. The efficient BGL secretion with exploration of structural and functional relationship offer vistas for large scale production and various industrial applications.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2016.01.001</identifier><identifier>PMID: 26772920</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amino Acid Sequence ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; beta-Glucosidase - chemistry ; beta-Glucosidase - genetics ; beta-Glucosidase - isolation & purification ; beta-Glucosidase - metabolism ; Cloning, Molecular ; Enzyme Activation ; Enzyme Stability ; Extracellular expression ; Glucose - chemistry ; Glucose - metabolism ; Hydrogen-Ion Concentration ; Molecular docking ; Molecular Docking Simulation ; Molecular Sequence Data ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Analysis, DNA ; Substrate Specificity ; Temperature ; Thermostable-glucose tolerant β-glucosidase</subject><ispartof>International journal of biological macromolecules, 2016-04, Vol.85, p.425-433</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7e607bd1d113fe16c40f6cd026c1049c19101def9e5b9efb00cb2cd35857c9283</citedby><cites>FETCH-LOGICAL-c368t-7e607bd1d113fe16c40f6cd026c1049c19101def9e5b9efb00cb2cd35857c9283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2016.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26772920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chamoli, Shivangi</creatorcontrib><creatorcontrib>Kumar, Piyush</creatorcontrib><creatorcontrib>Navani, Naveen Kumar</creatorcontrib><creatorcontrib>Verma, Ashok Kumar</creatorcontrib><title>Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>The thermostable, glucose tolerant β-glucosidase gene (bgl) of Glycoside hydrolase family 1, isolated from Bacillus subtilis, was cloned and overexpressed in Escherichia coli. The bgl has open reading frame of 1407bp, encoding 469 amino acids with predicted molecular weight of 53kDa. The recombinant protein (BGL) was purified 10.76 fold to homogeneity with specific activity of 54.04U/mg and recovery of 38.67%. The purified BGL was optimally active at pH 6.0 and temperature 60°C. The enzyme retained more than 85% of maximum activity after 1h preincubation at 60°C. The kinetic analysis indicated that BGL has highest catalytic efficiency (Kcat/Km) against p-nitrophenyl-β-d-xylopyranoside (654.58mM−1s−1) followed by p-nitrophenyl-β-d-glucopyranoside (292.53mM−1s−1) and p-nitrophenyl-β-d-galactopyranoside (61.17mM−1s−1). The Ki value for glucose and δ-gluconolactone was determined to be 1.9mM and 0.018mM, respectively. The BGL exhibited high tolerance against detergents and organic solvents. The homology modeling revealed that protein has 19 α-helices and 4 β-sheets and adopted (α/β)8 TIM barrel structure. Substrate docking and LigPlot analysis depicted the amino acids of active site involved in hydrogen bonding and hydrophobic interactions with substrates. The efficient BGL secretion with exploration of structural and functional relationship offer vistas for large scale production and various industrial applications.</description><subject>Amino Acid Sequence</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>beta-Glucosidase - chemistry</subject><subject>beta-Glucosidase - genetics</subject><subject>beta-Glucosidase - isolation & purification</subject><subject>beta-Glucosidase - metabolism</subject><subject>Cloning, Molecular</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>Extracellular expression</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Sequence Data</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>Thermostable-glucose tolerant β-glucosidase</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFu1DAQhi1ERbeFV6h85EDCTLLrJDeggoJUqQfgbDnjSfGSxIvtVCyP1QfpM-HVtlw5jebX_8-v-YS4QCgRUL3dlm7bOz8ZKqu8l4AlAD4TK2ybrgCA-rlYAa6xaLGGU3EW4zaraoPtC3FaqaapugpWYvzKFDj5sJf8exc4RufnN5J-mGAocXB_TMqKNLOV1tNPN9_KmBa7l36Qt-NCPnKR_MjBzEk-3BdHzVkTWQ7BT_JDKePSJze6-FKcDGaM_Opxnovvnz5-u_xcXN9cfbl8f11QrdpUNKyg6S1axHpgVLSGQZGFShHCuiPsMgLLQ8ebvuOhB6C-Iltv2k1DXdXW5-L18e4u-F8Lx6QnF4nH0czsl6ixyRygU3iwqqOVgo8x8KB3wU0m7DWCPpDWW_1EWh9Ia0CdSefgxWPH0k9s_8We0GbDu6OB86d3joOO5Hgmti4wJW29-1_HX-iUlVs</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Chamoli, Shivangi</creator><creator>Kumar, Piyush</creator><creator>Navani, Naveen Kumar</creator><creator>Verma, Ashok Kumar</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201604</creationdate><title>Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis</title><author>Chamoli, Shivangi ; Kumar, Piyush ; Navani, Naveen Kumar ; Verma, Ashok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7e607bd1d113fe16c40f6cd026c1049c19101def9e5b9efb00cb2cd35857c9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>beta-Glucosidase - chemistry</topic><topic>beta-Glucosidase - genetics</topic><topic>beta-Glucosidase - isolation & purification</topic><topic>beta-Glucosidase - metabolism</topic><topic>Cloning, Molecular</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>Extracellular expression</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Sequence Data</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>Thermostable-glucose tolerant β-glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamoli, Shivangi</creatorcontrib><creatorcontrib>Kumar, Piyush</creatorcontrib><creatorcontrib>Navani, Naveen Kumar</creatorcontrib><creatorcontrib>Verma, Ashok Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamoli, Shivangi</au><au>Kumar, Piyush</au><au>Navani, Naveen Kumar</au><au>Verma, Ashok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2016-04</date><risdate>2016</risdate><volume>85</volume><spage>425</spage><epage>433</epage><pages>425-433</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>The thermostable, glucose tolerant β-glucosidase gene (bgl) of Glycoside hydrolase family 1, isolated from Bacillus subtilis, was cloned and overexpressed in Escherichia coli. The bgl has open reading frame of 1407bp, encoding 469 amino acids with predicted molecular weight of 53kDa. The recombinant protein (BGL) was purified 10.76 fold to homogeneity with specific activity of 54.04U/mg and recovery of 38.67%. The purified BGL was optimally active at pH 6.0 and temperature 60°C. The enzyme retained more than 85% of maximum activity after 1h preincubation at 60°C. The kinetic analysis indicated that BGL has highest catalytic efficiency (Kcat/Km) against p-nitrophenyl-β-d-xylopyranoside (654.58mM−1s−1) followed by p-nitrophenyl-β-d-glucopyranoside (292.53mM−1s−1) and p-nitrophenyl-β-d-galactopyranoside (61.17mM−1s−1). The Ki value for glucose and δ-gluconolactone was determined to be 1.9mM and 0.018mM, respectively. The BGL exhibited high tolerance against detergents and organic solvents. The homology modeling revealed that protein has 19 α-helices and 4 β-sheets and adopted (α/β)8 TIM barrel structure. Substrate docking and LigPlot analysis depicted the amino acids of active site involved in hydrogen bonding and hydrophobic interactions with substrates. The efficient BGL secretion with exploration of structural and functional relationship offer vistas for large scale production and various industrial applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26772920</pmid><doi>10.1016/j.ijbiomac.2016.01.001</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2016-04, Vol.85, p.425-433 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_1765109618 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Amino Acid Sequence Bacillus subtilis - enzymology Bacillus subtilis - genetics Bacillus subtilis - metabolism beta-Glucosidase - chemistry beta-Glucosidase - genetics beta-Glucosidase - isolation & purification beta-Glucosidase - metabolism Cloning, Molecular Enzyme Activation Enzyme Stability Extracellular expression Glucose - chemistry Glucose - metabolism Hydrogen-Ion Concentration Molecular docking Molecular Docking Simulation Molecular Sequence Data Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Sequence Alignment Sequence Analysis, DNA Substrate Specificity Temperature Thermostable-glucose tolerant β-glucosidase |
title | Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secretory%20expression,%20characterization%20and%20docking%20study%20of%20glucose-tolerant%20%CE%B2-glucosidase%20from%20B.%20subtilis&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Chamoli,%20Shivangi&rft.date=2016-04&rft.volume=85&rft.spage=425&rft.epage=433&rft.pages=425-433&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2016.01.001&rft_dat=%3Cproquest_cross%3E1765109618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765109618&rft_id=info:pmid/26772920&rft_els_id=S0141813016300010&rfr_iscdi=true |