Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist

Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2016-02, Vol.16 (2), p.953-959
Hauptverfasser: Yeh, Po-Chun, Jin, Wencan, Zaki, Nader, Kunstmann, Jens, Chenet, Daniel, Arefe, Ghidewon, Sadowski, Jerzy T, Dadap, Jerry I, Sutter, Peter, Hone, James, Osgood, Richard M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 2
container_start_page 953
container_title Nano letters
container_volume 16
creator Yeh, Po-Chun
Jin, Wencan
Zaki, Nader
Kunstmann, Jens
Chenet, Daniel
Arefe, Ghidewon
Sadowski, Jerzy T
Dadap, Jerry I
Sutter, Peter
Hone, James
Osgood, Richard M
description Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.
doi_str_mv 10.1021/acs.nanolett.5b03883
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764702561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1764702561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a298t-ce1fcbe74152854f325f8ad2aecef7e95bfc08f3920569f59fd29a895f2037633</originalsourceid><addsrcrecordid>eNo90M9PwjAUwPHGaATR_8CYHr0M-2Pd2qMiKgnEA3jx0nTlNY6MDtsuhv_eEdDTa14-aV6-CN1SMqaE0Qdj49gb3zaQ0lhUhEvJz9CQCk6yQil2_v-W-QBdxbghhCguyCUasKIsSJ6XQ_T5XAewCS_AxC7AFnzCrcPpC_Cq86ZqAE-bHoTW1xYvU-hs6t3BPNWN2UPAi3bJcLXHM58gHFernzqma3ThTBPh5jRH6ONlupq8ZfP319nkcZ4ZpmTKLFBnKyhzKpgUueNMOGnWzIAFV4ISlbNEOq4YEYVyQrk1U0Yq4RjhZcH5CN0f_92F9ruDmPS2jhaaxnhou6hpWeQlYaKgPb070a7awlrvQr01Ya__evSAHEFfV2_aLvj-ck2JPiTXh-Vfcn1Kzn8BNsp1qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764702561</pqid></control><display><type>article</type><title>Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist</title><source>American Chemical Society Publications</source><creator>Yeh, Po-Chun ; Jin, Wencan ; Zaki, Nader ; Kunstmann, Jens ; Chenet, Daniel ; Arefe, Ghidewon ; Sadowski, Jerzy T ; Dadap, Jerry I ; Sutter, Peter ; Hone, James ; Osgood, Richard M</creator><creatorcontrib>Yeh, Po-Chun ; Jin, Wencan ; Zaki, Nader ; Kunstmann, Jens ; Chenet, Daniel ; Arefe, Ghidewon ; Sadowski, Jerzy T ; Dadap, Jerry I ; Sutter, Peter ; Hone, James ; Osgood, Richard M</creatorcontrib><description>Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b03883</identifier><identifier>PMID: 26760447</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2016-02, Vol.16 (2), p.953-959</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b03883$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b03883$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26760447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeh, Po-Chun</creatorcontrib><creatorcontrib>Jin, Wencan</creatorcontrib><creatorcontrib>Zaki, Nader</creatorcontrib><creatorcontrib>Kunstmann, Jens</creatorcontrib><creatorcontrib>Chenet, Daniel</creatorcontrib><creatorcontrib>Arefe, Ghidewon</creatorcontrib><creatorcontrib>Sadowski, Jerzy T</creatorcontrib><creatorcontrib>Dadap, Jerry I</creatorcontrib><creatorcontrib>Sutter, Peter</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Osgood, Richard M</creatorcontrib><title>Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo90M9PwjAUwPHGaATR_8CYHr0M-2Pd2qMiKgnEA3jx0nTlNY6MDtsuhv_eEdDTa14-aV6-CN1SMqaE0Qdj49gb3zaQ0lhUhEvJz9CQCk6yQil2_v-W-QBdxbghhCguyCUasKIsSJ6XQ_T5XAewCS_AxC7AFnzCrcPpC_Cq86ZqAE-bHoTW1xYvU-hs6t3BPNWN2UPAi3bJcLXHM58gHFernzqma3ThTBPh5jRH6ONlupq8ZfP319nkcZ4ZpmTKLFBnKyhzKpgUueNMOGnWzIAFV4ISlbNEOq4YEYVyQrk1U0Yq4RjhZcH5CN0f_92F9ruDmPS2jhaaxnhou6hpWeQlYaKgPb070a7awlrvQr01Ya__evSAHEFfV2_aLvj-ck2JPiTXh-Vfcn1Kzn8BNsp1qw</recordid><startdate>20160210</startdate><enddate>20160210</enddate><creator>Yeh, Po-Chun</creator><creator>Jin, Wencan</creator><creator>Zaki, Nader</creator><creator>Kunstmann, Jens</creator><creator>Chenet, Daniel</creator><creator>Arefe, Ghidewon</creator><creator>Sadowski, Jerzy T</creator><creator>Dadap, Jerry I</creator><creator>Sutter, Peter</creator><creator>Hone, James</creator><creator>Osgood, Richard M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160210</creationdate><title>Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist</title><author>Yeh, Po-Chun ; Jin, Wencan ; Zaki, Nader ; Kunstmann, Jens ; Chenet, Daniel ; Arefe, Ghidewon ; Sadowski, Jerzy T ; Dadap, Jerry I ; Sutter, Peter ; Hone, James ; Osgood, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a298t-ce1fcbe74152854f325f8ad2aecef7e95bfc08f3920569f59fd29a895f2037633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeh, Po-Chun</creatorcontrib><creatorcontrib>Jin, Wencan</creatorcontrib><creatorcontrib>Zaki, Nader</creatorcontrib><creatorcontrib>Kunstmann, Jens</creatorcontrib><creatorcontrib>Chenet, Daniel</creatorcontrib><creatorcontrib>Arefe, Ghidewon</creatorcontrib><creatorcontrib>Sadowski, Jerzy T</creatorcontrib><creatorcontrib>Dadap, Jerry I</creatorcontrib><creatorcontrib>Sutter, Peter</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Osgood, Richard M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeh, Po-Chun</au><au>Jin, Wencan</au><au>Zaki, Nader</au><au>Kunstmann, Jens</au><au>Chenet, Daniel</au><au>Arefe, Ghidewon</au><au>Sadowski, Jerzy T</au><au>Dadap, Jerry I</au><au>Sutter, Peter</au><au>Hone, James</au><au>Osgood, Richard M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-02-10</date><risdate>2016</risdate><volume>16</volume><issue>2</issue><spage>953</spage><epage>959</epage><pages>953-959</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26760447</pmid><doi>10.1021/acs.nanolett.5b03883</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-02, Vol.16 (2), p.953-959
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1764702561
source American Chemical Society Publications
title Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Measurement%20of%20the%20Tunable%20Electronic%20Structure%20of%20Bilayer%20MoS2%20by%20Interlayer%20Twist&rft.jtitle=Nano%20letters&rft.au=Yeh,%20Po-Chun&rft.date=2016-02-10&rft.volume=16&rft.issue=2&rft.spage=953&rft.epage=959&rft.pages=953-959&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b03883&rft_dat=%3Cproquest_pubme%3E1764702561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764702561&rft_id=info:pmid/26760447&rfr_iscdi=true