Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus

Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2015-12, Vol.39 (3), p.289-309
Hauptverfasser: Ferguson, K. A., Njap, F., Nicola, W., Skinner, F. K., Campbell, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 3
container_start_page 289
container_title Journal of computational neuroscience
container_volume 39
creator Ferguson, K. A.
Njap, F.
Nicola, W.
Skinner, F. K.
Campbell, S. A.
description Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3–12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.
doi_str_mv 10.1007/s10827-015-0577-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764699678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3868990941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-28fa9c35714aae2e78aa3f3c20f8cc82fc83736ad66f18169c19b0fd30e8608d3</originalsourceid><addsrcrecordid>eNqNkcFqFTEUhoNY7LXtA7iRATduouckM0lmKaW1QsGNXYfcTHJv6sxkTGawF3x4M71VRBBcBZLv_w8nHyGvEN4hgHyfERSTFLCh0EhJ8RnZYCM5FUry52QDLWtpw5Gfkpc53wOAkggvyCkTtaiBqw35cfVghjCGcVfNe1f1YQhzrqKvrOv7pTepMp2ZZjOHOFbbJeV5RQdn92YMechVKNch9nEXrOn7A92a7LrKPdhQQjEdqtHN32P6-li6jtiHaYrWDNOSz8mJN312F0_nGbm7vvpyeUNvP3_8dPnhltpaNjNlypvW8kZibYxjTipjuOeWgVfWKuat4pIL0wnhUaFoLbZb8B0HpwSojp-Rt8feKcVvi8uzHkJeFzSji0vWKMt_tK2Q6j_QBhlKUE1B3_yF3scljWWRQnGuRK1wpfBI2RRzTs7rKYXBpING0KtFfbSoi0W9WtRYMq-fmpft4LrfiV_aCsCOQC5P486lP0b_s_Uno42pcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733864815</pqid></control><display><type>article</type><title>Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ferguson, K. A. ; Njap, F. ; Nicola, W. ; Skinner, F. K. ; Campbell, S. A.</creator><creatorcontrib>Ferguson, K. A. ; Njap, F. ; Nicola, W. ; Skinner, F. K. ; Campbell, S. A.</creatorcontrib><description>Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3–12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.</description><identifier>ISSN: 0929-5313</identifier><identifier>EISSN: 1573-6873</identifier><identifier>DOI: 10.1007/s10827-015-0577-1</identifier><identifier>PMID: 26464038</identifier><identifier>CODEN: JCNEFR</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Action Potentials - physiology ; Adaptation, Physiological - physiology ; Animals ; Biomedical and Life Sciences ; Biomedicine ; CA1 Region, Hippocampal - physiology ; Computer Simulation ; Human Genetics ; Mathematical Concepts ; Models, Neurological ; Nerve Net - physiology ; Neural Networks (Computer) ; Neurology ; Neurosciences ; Pyramidal Cells - physiology ; Rats ; Theory of Computation ; Theta Rhythm - physiology</subject><ispartof>Journal of computational neuroscience, 2015-12, Vol.39 (3), p.289-309</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-28fa9c35714aae2e78aa3f3c20f8cc82fc83736ad66f18169c19b0fd30e8608d3</citedby><cites>FETCH-LOGICAL-c475t-28fa9c35714aae2e78aa3f3c20f8cc82fc83736ad66f18169c19b0fd30e8608d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10827-015-0577-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10827-015-0577-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26464038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferguson, K. A.</creatorcontrib><creatorcontrib>Njap, F.</creatorcontrib><creatorcontrib>Nicola, W.</creatorcontrib><creatorcontrib>Skinner, F. K.</creatorcontrib><creatorcontrib>Campbell, S. A.</creatorcontrib><title>Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus</title><title>Journal of computational neuroscience</title><addtitle>J Comput Neurosci</addtitle><addtitle>J Comput Neurosci</addtitle><description>Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3–12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.</description><subject>Action Potentials - physiology</subject><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>Computer Simulation</subject><subject>Human Genetics</subject><subject>Mathematical Concepts</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural Networks (Computer)</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Theory of Computation</subject><subject>Theta Rhythm - physiology</subject><issn>0929-5313</issn><issn>1573-6873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkcFqFTEUhoNY7LXtA7iRATduouckM0lmKaW1QsGNXYfcTHJv6sxkTGawF3x4M71VRBBcBZLv_w8nHyGvEN4hgHyfERSTFLCh0EhJ8RnZYCM5FUry52QDLWtpw5Gfkpc53wOAkggvyCkTtaiBqw35cfVghjCGcVfNe1f1YQhzrqKvrOv7pTepMp2ZZjOHOFbbJeV5RQdn92YMechVKNch9nEXrOn7A92a7LrKPdhQQjEdqtHN32P6-li6jtiHaYrWDNOSz8mJN312F0_nGbm7vvpyeUNvP3_8dPnhltpaNjNlypvW8kZibYxjTipjuOeWgVfWKuat4pIL0wnhUaFoLbZb8B0HpwSojp-Rt8feKcVvi8uzHkJeFzSji0vWKMt_tK2Q6j_QBhlKUE1B3_yF3scljWWRQnGuRK1wpfBI2RRzTs7rKYXBpING0KtFfbSoi0W9WtRYMq-fmpft4LrfiV_aCsCOQC5P486lP0b_s_Uno42pcg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Ferguson, K. A.</creator><creator>Njap, F.</creator><creator>Nicola, W.</creator><creator>Skinner, F. K.</creator><creator>Campbell, S. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus</title><author>Ferguson, K. A. ; Njap, F. ; Nicola, W. ; Skinner, F. K. ; Campbell, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-28fa9c35714aae2e78aa3f3c20f8cc82fc83736ad66f18169c19b0fd30e8608d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>Computer Simulation</topic><topic>Human Genetics</topic><topic>Mathematical Concepts</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural Networks (Computer)</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Theory of Computation</topic><topic>Theta Rhythm - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferguson, K. A.</creatorcontrib><creatorcontrib>Njap, F.</creatorcontrib><creatorcontrib>Nicola, W.</creatorcontrib><creatorcontrib>Skinner, F. K.</creatorcontrib><creatorcontrib>Campbell, S. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferguson, K. A.</au><au>Njap, F.</au><au>Nicola, W.</au><au>Skinner, F. K.</au><au>Campbell, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus</atitle><jtitle>Journal of computational neuroscience</jtitle><stitle>J Comput Neurosci</stitle><addtitle>J Comput Neurosci</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>39</volume><issue>3</issue><spage>289</spage><epage>309</epage><pages>289-309</pages><issn>0929-5313</issn><eissn>1573-6873</eissn><coden>JCNEFR</coden><abstract>Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3–12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26464038</pmid><doi>10.1007/s10827-015-0577-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5313
ispartof Journal of computational neuroscience, 2015-12, Vol.39 (3), p.289-309
issn 0929-5313
1573-6873
language eng
recordid cdi_proquest_miscellaneous_1764699678
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Action Potentials - physiology
Adaptation, Physiological - physiology
Animals
Biomedical and Life Sciences
Biomedicine
CA1 Region, Hippocampal - physiology
Computer Simulation
Human Genetics
Mathematical Concepts
Models, Neurological
Nerve Net - physiology
Neural Networks (Computer)
Neurology
Neurosciences
Pyramidal Cells - physiology
Rats
Theory of Computation
Theta Rhythm - physiology
title Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Examining%20the%20limits%20of%20cellular%20adaptation%20bursting%20mechanisms%20in%20biologically-based%20excitatory%20networks%20of%20the%20hippocampus&rft.jtitle=Journal%20of%20computational%20neuroscience&rft.au=Ferguson,%20K.%20A.&rft.date=2015-12-01&rft.volume=39&rft.issue=3&rft.spage=289&rft.epage=309&rft.pages=289-309&rft.issn=0929-5313&rft.eissn=1573-6873&rft.coden=JCNEFR&rft_id=info:doi/10.1007/s10827-015-0577-1&rft_dat=%3Cproquest_cross%3E3868990941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733864815&rft_id=info:pmid/26464038&rfr_iscdi=true