Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance

What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological science 2016-02, Vol.27 (2), p.191-202
Hauptverfasser: Matthews, Percival G., Lewis, Mark Rose, Hubbard, Edward M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 191
container_title Psychological science
container_volume 27
creator Matthews, Percival G.
Lewis, Mark Rose
Hubbard, Edward M.
description What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.
doi_str_mv 10.1177/0956797615617799
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764698631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24763536</jstor_id><sage_id>10.1177_0956797615617799</sage_id><sourcerecordid>24763536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVJaCZp99mkGLrJxonespZl2jwgL_qA7IwsXyUabCuV7MD8-2iYTAayiLggXZ3vHomD0CHBJ4QodYq1kEorSYTMrdaf0IxwqUpNK7yDZiu5XOl7aD-lBc5LMfkZ7VGpCK4on6H7y6H1z76dTFf89M5BhMFCKvxQ3IQhLfsmdN4Wv83oQ3EXQ9aSHx7yEVpvx-LPhrg242NxB9GF2Jts8QXtOtMl-Pq6H6B_Z7_-zi_Kq9vzy_mPq9KySo2lqxRIBhg4o1QbrlspKBEVVS2TDdGts7kccMNtAw3ollqKRb4AYYlw7AAdr32fYvg_QRrr3icLXWcGCFOqiZJc6koyktHv79BFmOKQf1dTzDQWhFc4U3hN2RhSiuDqp-h7E5c1wfUq9fp96nnk26vx1PTQvg1sYs5AuQaSeYDtqx8YHq35RRpD3PpxJZlgkr0A6TeTug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039051480</pqid></control><display><type>article</type><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><source>MEDLINE</source><source>SAGE Journals</source><source>JSTOR</source><creator>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</creator><creatorcontrib>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</creatorcontrib><description>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</description><identifier>ISSN: 0956-7976</identifier><identifier>EISSN: 1467-9280</identifier><identifier>DOI: 10.1177/0956797615617799</identifier><identifier>PMID: 26710824</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Adolescent ; Algebra ; Cognition ; Comprehension - physiology ; Concepts ; Developmental psychology ; Female ; Humans ; Individual differences ; Individuality ; Male ; Mathematical Concepts ; Problem Solving - physiology ; Psychological Tests ; Young Adult</subject><ispartof>Psychological science, 2016-02, Vol.27 (2), p.191-202</ispartof><rights>Copyright © 2016 Association for Psychological Science</rights><rights>The Author(s) 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</citedby><cites>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24763536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24763536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,21819,27924,27925,43621,43622,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26710824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, Percival G.</creatorcontrib><creatorcontrib>Lewis, Mark Rose</creatorcontrib><creatorcontrib>Hubbard, Edward M.</creatorcontrib><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><title>Psychological science</title><addtitle>Psychol Sci</addtitle><description>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</description><subject>Adolescent</subject><subject>Algebra</subject><subject>Cognition</subject><subject>Comprehension - physiology</subject><subject>Concepts</subject><subject>Developmental psychology</subject><subject>Female</subject><subject>Humans</subject><subject>Individual differences</subject><subject>Individuality</subject><subject>Male</subject><subject>Mathematical Concepts</subject><subject>Problem Solving - physiology</subject><subject>Psychological Tests</subject><subject>Young Adult</subject><issn>0956-7976</issn><issn>1467-9280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAUhUVJaCZp99mkGLrJxonespZl2jwgL_qA7IwsXyUabCuV7MD8-2iYTAayiLggXZ3vHomD0CHBJ4QodYq1kEorSYTMrdaf0IxwqUpNK7yDZiu5XOl7aD-lBc5LMfkZ7VGpCK4on6H7y6H1z76dTFf89M5BhMFCKvxQ3IQhLfsmdN4Wv83oQ3EXQ9aSHx7yEVpvx-LPhrg242NxB9GF2Jts8QXtOtMl-Pq6H6B_Z7_-zi_Kq9vzy_mPq9KySo2lqxRIBhg4o1QbrlspKBEVVS2TDdGts7kccMNtAw3ollqKRb4AYYlw7AAdr32fYvg_QRrr3icLXWcGCFOqiZJc6koyktHv79BFmOKQf1dTzDQWhFc4U3hN2RhSiuDqp-h7E5c1wfUq9fp96nnk26vx1PTQvg1sYs5AuQaSeYDtqx8YHq35RRpD3PpxJZlgkr0A6TeTug</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Matthews, Percival G.</creator><creator>Lewis, Mark Rose</creator><creator>Hubbard, Edward M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>20160201</creationdate><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><author>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Algebra</topic><topic>Cognition</topic><topic>Comprehension - physiology</topic><topic>Concepts</topic><topic>Developmental psychology</topic><topic>Female</topic><topic>Humans</topic><topic>Individual differences</topic><topic>Individuality</topic><topic>Male</topic><topic>Mathematical Concepts</topic><topic>Problem Solving - physiology</topic><topic>Psychological Tests</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, Percival G.</creatorcontrib><creatorcontrib>Lewis, Mark Rose</creatorcontrib><creatorcontrib>Hubbard, Edward M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, Percival G.</au><au>Lewis, Mark Rose</au><au>Hubbard, Edward M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</atitle><jtitle>Psychological science</jtitle><addtitle>Psychol Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>27</volume><issue>2</issue><spage>191</spage><epage>202</epage><pages>191-202</pages><issn>0956-7976</issn><eissn>1467-9280</eissn><abstract>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>26710824</pmid><doi>10.1177/0956797615617799</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-7976
ispartof Psychological science, 2016-02, Vol.27 (2), p.191-202
issn 0956-7976
1467-9280
language eng
recordid cdi_proquest_miscellaneous_1764698631
source MEDLINE; SAGE Journals; JSTOR
subjects Adolescent
Algebra
Cognition
Comprehension - physiology
Concepts
Developmental psychology
Female
Humans
Individual differences
Individuality
Male
Mathematical Concepts
Problem Solving - physiology
Psychological Tests
Young Adult
title Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20Differences%20in%20Nonsymbolic%20Ratio%20Processing%20Predict%20Symbolic%20Math%20Performance&rft.jtitle=Psychological%20science&rft.au=Matthews,%20Percival%20G.&rft.date=2016-02-01&rft.volume=27&rft.issue=2&rft.spage=191&rft.epage=202&rft.pages=191-202&rft.issn=0956-7976&rft.eissn=1467-9280&rft_id=info:doi/10.1177/0956797615617799&rft_dat=%3Cjstor_proqu%3E24763536%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039051480&rft_id=info:pmid/26710824&rft_jstor_id=24763536&rft_sage_id=10.1177_0956797615617799&rfr_iscdi=true