Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance
What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approx...
Gespeichert in:
Veröffentlicht in: | Psychological science 2016-02, Vol.27 (2), p.191-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | Psychological science |
container_volume | 27 |
creator | Matthews, Percival G. Lewis, Mark Rose Hubbard, Edward M. |
description | What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities. |
doi_str_mv | 10.1177/0956797615617799 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764698631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24763536</jstor_id><sage_id>10.1177_0956797615617799</sage_id><sourcerecordid>24763536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVJaCZp99mkGLrJxonespZl2jwgL_qA7IwsXyUabCuV7MD8-2iYTAayiLggXZ3vHomD0CHBJ4QodYq1kEorSYTMrdaf0IxwqUpNK7yDZiu5XOl7aD-lBc5LMfkZ7VGpCK4on6H7y6H1z76dTFf89M5BhMFCKvxQ3IQhLfsmdN4Wv83oQ3EXQ9aSHx7yEVpvx-LPhrg242NxB9GF2Jts8QXtOtMl-Pq6H6B_Z7_-zi_Kq9vzy_mPq9KySo2lqxRIBhg4o1QbrlspKBEVVS2TDdGts7kccMNtAw3ollqKRb4AYYlw7AAdr32fYvg_QRrr3icLXWcGCFOqiZJc6koyktHv79BFmOKQf1dTzDQWhFc4U3hN2RhSiuDqp-h7E5c1wfUq9fp96nnk26vx1PTQvg1sYs5AuQaSeYDtqx8YHq35RRpD3PpxJZlgkr0A6TeTug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039051480</pqid></control><display><type>article</type><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><source>MEDLINE</source><source>SAGE Journals</source><source>JSTOR</source><creator>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</creator><creatorcontrib>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</creatorcontrib><description>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</description><identifier>ISSN: 0956-7976</identifier><identifier>EISSN: 1467-9280</identifier><identifier>DOI: 10.1177/0956797615617799</identifier><identifier>PMID: 26710824</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Adolescent ; Algebra ; Cognition ; Comprehension - physiology ; Concepts ; Developmental psychology ; Female ; Humans ; Individual differences ; Individuality ; Male ; Mathematical Concepts ; Problem Solving - physiology ; Psychological Tests ; Young Adult</subject><ispartof>Psychological science, 2016-02, Vol.27 (2), p.191-202</ispartof><rights>Copyright © 2016 Association for Psychological Science</rights><rights>The Author(s) 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</citedby><cites>FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24763536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24763536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,21819,27924,27925,43621,43622,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26710824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matthews, Percival G.</creatorcontrib><creatorcontrib>Lewis, Mark Rose</creatorcontrib><creatorcontrib>Hubbard, Edward M.</creatorcontrib><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><title>Psychological science</title><addtitle>Psychol Sci</addtitle><description>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</description><subject>Adolescent</subject><subject>Algebra</subject><subject>Cognition</subject><subject>Comprehension - physiology</subject><subject>Concepts</subject><subject>Developmental psychology</subject><subject>Female</subject><subject>Humans</subject><subject>Individual differences</subject><subject>Individuality</subject><subject>Male</subject><subject>Mathematical Concepts</subject><subject>Problem Solving - physiology</subject><subject>Psychological Tests</subject><subject>Young Adult</subject><issn>0956-7976</issn><issn>1467-9280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtr3DAUhUVJaCZp99mkGLrJxonespZl2jwgL_qA7IwsXyUabCuV7MD8-2iYTAayiLggXZ3vHomD0CHBJ4QodYq1kEorSYTMrdaf0IxwqUpNK7yDZiu5XOl7aD-lBc5LMfkZ7VGpCK4on6H7y6H1z76dTFf89M5BhMFCKvxQ3IQhLfsmdN4Wv83oQ3EXQ9aSHx7yEVpvx-LPhrg242NxB9GF2Jts8QXtOtMl-Pq6H6B_Z7_-zi_Kq9vzy_mPq9KySo2lqxRIBhg4o1QbrlspKBEVVS2TDdGts7kccMNtAw3ollqKRb4AYYlw7AAdr32fYvg_QRrr3icLXWcGCFOqiZJc6koyktHv79BFmOKQf1dTzDQWhFc4U3hN2RhSiuDqp-h7E5c1wfUq9fp96nnk26vx1PTQvg1sYs5AuQaSeYDtqx8YHq35RRpD3PpxJZlgkr0A6TeTug</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Matthews, Percival G.</creator><creator>Lewis, Mark Rose</creator><creator>Hubbard, Edward M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope></search><sort><creationdate>20160201</creationdate><title>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</title><author>Matthews, Percival G. ; Lewis, Mark Rose ; Hubbard, Edward M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-f87e63e0e43229a49d65215827d36b19dfcdfcfe4a4cbebe9d2c205fe4e5c15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Algebra</topic><topic>Cognition</topic><topic>Comprehension - physiology</topic><topic>Concepts</topic><topic>Developmental psychology</topic><topic>Female</topic><topic>Humans</topic><topic>Individual differences</topic><topic>Individuality</topic><topic>Male</topic><topic>Mathematical Concepts</topic><topic>Problem Solving - physiology</topic><topic>Psychological Tests</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matthews, Percival G.</creatorcontrib><creatorcontrib>Lewis, Mark Rose</creatorcontrib><creatorcontrib>Hubbard, Edward M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matthews, Percival G.</au><au>Lewis, Mark Rose</au><au>Hubbard, Edward M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance</atitle><jtitle>Psychological science</jtitle><addtitle>Psychol Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>27</volume><issue>2</issue><spage>191</spage><epage>202</epage><pages>191-202</pages><issn>0956-7976</issn><eissn>1467-9280</eissn><abstract>What basic capacities lay the foundation for advanced numerical cognition? Are there basic nonsymbolic abilities that support the understanding of advanced numerical concepts, such as fractions? To date, most theories have posited that previously identified core numerical systems, such as the approximate number system (ANS), are ill-suited for learning fraction concepts. However, recent research in developmental psychology and neuroscience has revealed a ratio-processing system (RPS) that is sensitive to magnitudes of nonsymbolic ratios and may be ideally suited for supporting fraction concepts. We provide evidence for this hypothesis by showing that individual differences in RPS acuity predict performance on four measures of mathematical competence, including a university entrance exam in algebra. We suggest that the nonsymbolic RPS may support symbolic fraction understanding much as the ANS supports whole-number concepts. Thus, even abstract mathematical concepts, such as fractions, may be grounded not only in higher-order logic and language, but also in basic nonsymbolic processing abilities.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>26710824</pmid><doi>10.1177/0956797615617799</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7976 |
ispartof | Psychological science, 2016-02, Vol.27 (2), p.191-202 |
issn | 0956-7976 1467-9280 |
language | eng |
recordid | cdi_proquest_miscellaneous_1764698631 |
source | MEDLINE; SAGE Journals; JSTOR |
subjects | Adolescent Algebra Cognition Comprehension - physiology Concepts Developmental psychology Female Humans Individual differences Individuality Male Mathematical Concepts Problem Solving - physiology Psychological Tests Young Adult |
title | Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Individual%20Differences%20in%20Nonsymbolic%20Ratio%20Processing%20Predict%20Symbolic%20Math%20Performance&rft.jtitle=Psychological%20science&rft.au=Matthews,%20Percival%20G.&rft.date=2016-02-01&rft.volume=27&rft.issue=2&rft.spage=191&rft.epage=202&rft.pages=191-202&rft.issn=0956-7976&rft.eissn=1467-9280&rft_id=info:doi/10.1177/0956797615617799&rft_dat=%3Cjstor_proqu%3E24763536%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039051480&rft_id=info:pmid/26710824&rft_jstor_id=24763536&rft_sage_id=10.1177_0956797615617799&rfr_iscdi=true |