Evolutionary innovation: a bone-eating marine symbiosis
Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2005-09, Vol.7 (9), p.1369-1378 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1378 |
---|---|
container_issue | 9 |
container_start_page | 1369 |
container_title | Environmental microbiology |
container_volume | 7 |
creator | Goffredi, Shana K. Orphan, Victoria J. Rouse, Greg W. Jahnke, Linda Embaye, Tsegeria Turk, Kendra Lee, Ray Vrijenhoek, Robert C. |
description | Summary
Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm. |
doi_str_mv | 10.1111/j.1462-2920.2005.00824.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17645616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17645616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</originalsourceid><addsrcrecordid>eNqNkV1PwjAUhhujEUX_gtmVd5un38N4owSRBDQmflw2W2lNcWy4MoR_bycEb-1Nz0nf57R5ilCEIcFhXc0SzASJSY9AQgB4ApASlqwP0Mn-4HBfY9JBp97PALCkEo5RBwsMLBVwguRgVRXN0lVlVm8iV5bVKmu76yiL8qo0sQlt-RHNs9qVJvKbee4q7_wZOrJZ4c35bu-i1_vBS_8hHj8NR_3bcaw5YBbnWmrOKJM2hx5MTWphii3TXAo95dhahkWmcUryHrcsJ4RaSg3VIFnOQfZoF11u5y7q6qsxfqnmzmtTFFlpqsYrLAXjAosQTLdBXVfe18aqRe3CqzcKg2qlqZlqfajWjWqlqV9pah3Qi90dTT430z9wZykEbraBb1eYzb8Hq8FkFIqAx1vc-aVZ7_Gs_lQifAhX749DldLn_tudmKgh_QG184jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17645616</pqid></control><display><type>article</type><title>Evolutionary innovation: a bone-eating marine symbiosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</creator><creatorcontrib>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</creatorcontrib><description>Summary
Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2005.00824.x</identifier><identifier>PMID: 16104860</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Biodegradation, Environmental ; Biological Evolution ; Bone and Bones - chemistry ; Bone and Bones - microbiology ; DNA - genetics ; Fatty Acids - analysis ; Microscopy, Electron ; Oceanospirillaceae - genetics ; Oceanospirillaceae - growth & development ; Oceanospirillaceae - ultrastructure ; Pacific Ocean ; Phylogeny ; Polychaeta - genetics ; Polychaeta - growth & development ; Polychaeta - ultrastructure ; RNA, Bacterial - genetics ; RNA, Ribosomal, 16S - genetics ; Symbiosis ; Whales</subject><ispartof>Environmental microbiology, 2005-09, Vol.7 (9), p.1369-1378</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</citedby><cites>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1462-2920.2005.00824.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1462-2920.2005.00824.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16104860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goffredi, Shana K.</creatorcontrib><creatorcontrib>Orphan, Victoria J.</creatorcontrib><creatorcontrib>Rouse, Greg W.</creatorcontrib><creatorcontrib>Jahnke, Linda</creatorcontrib><creatorcontrib>Embaye, Tsegeria</creatorcontrib><creatorcontrib>Turk, Kendra</creatorcontrib><creatorcontrib>Lee, Ray</creatorcontrib><creatorcontrib>Vrijenhoek, Robert C.</creatorcontrib><title>Evolutionary innovation: a bone-eating marine symbiosis</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</description><subject>Animals</subject><subject>Biodegradation, Environmental</subject><subject>Biological Evolution</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - microbiology</subject><subject>DNA - genetics</subject><subject>Fatty Acids - analysis</subject><subject>Microscopy, Electron</subject><subject>Oceanospirillaceae - genetics</subject><subject>Oceanospirillaceae - growth & development</subject><subject>Oceanospirillaceae - ultrastructure</subject><subject>Pacific Ocean</subject><subject>Phylogeny</subject><subject>Polychaeta - genetics</subject><subject>Polychaeta - growth & development</subject><subject>Polychaeta - ultrastructure</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Symbiosis</subject><subject>Whales</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1PwjAUhhujEUX_gtmVd5un38N4owSRBDQmflw2W2lNcWy4MoR_bycEb-1Nz0nf57R5ilCEIcFhXc0SzASJSY9AQgB4ApASlqwP0Mn-4HBfY9JBp97PALCkEo5RBwsMLBVwguRgVRXN0lVlVm8iV5bVKmu76yiL8qo0sQlt-RHNs9qVJvKbee4q7_wZOrJZ4c35bu-i1_vBS_8hHj8NR_3bcaw5YBbnWmrOKJM2hx5MTWphii3TXAo95dhahkWmcUryHrcsJ4RaSg3VIFnOQfZoF11u5y7q6qsxfqnmzmtTFFlpqsYrLAXjAosQTLdBXVfe18aqRe3CqzcKg2qlqZlqfajWjWqlqV9pah3Qi90dTT430z9wZykEbraBb1eYzb8Hq8FkFIqAx1vc-aVZ7_Gs_lQifAhX749DldLn_tudmKgh_QG184jo</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Goffredi, Shana K.</creator><creator>Orphan, Victoria J.</creator><creator>Rouse, Greg W.</creator><creator>Jahnke, Linda</creator><creator>Embaye, Tsegeria</creator><creator>Turk, Kendra</creator><creator>Lee, Ray</creator><creator>Vrijenhoek, Robert C.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>200509</creationdate><title>Evolutionary innovation: a bone-eating marine symbiosis</title><author>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biodegradation, Environmental</topic><topic>Biological Evolution</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - microbiology</topic><topic>DNA - genetics</topic><topic>Fatty Acids - analysis</topic><topic>Microscopy, Electron</topic><topic>Oceanospirillaceae - genetics</topic><topic>Oceanospirillaceae - growth & development</topic><topic>Oceanospirillaceae - ultrastructure</topic><topic>Pacific Ocean</topic><topic>Phylogeny</topic><topic>Polychaeta - genetics</topic><topic>Polychaeta - growth & development</topic><topic>Polychaeta - ultrastructure</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Symbiosis</topic><topic>Whales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goffredi, Shana K.</creatorcontrib><creatorcontrib>Orphan, Victoria J.</creatorcontrib><creatorcontrib>Rouse, Greg W.</creatorcontrib><creatorcontrib>Jahnke, Linda</creatorcontrib><creatorcontrib>Embaye, Tsegeria</creatorcontrib><creatorcontrib>Turk, Kendra</creatorcontrib><creatorcontrib>Lee, Ray</creatorcontrib><creatorcontrib>Vrijenhoek, Robert C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goffredi, Shana K.</au><au>Orphan, Victoria J.</au><au>Rouse, Greg W.</au><au>Jahnke, Linda</au><au>Embaye, Tsegeria</au><au>Turk, Kendra</au><au>Lee, Ray</au><au>Vrijenhoek, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary innovation: a bone-eating marine symbiosis</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2005-09</date><risdate>2005</risdate><volume>7</volume><issue>9</issue><spage>1369</spage><epage>1378</epage><pages>1369-1378</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16104860</pmid><doi>10.1111/j.1462-2920.2005.00824.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2005-09, Vol.7 (9), p.1369-1378 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_17645616 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biodegradation, Environmental Biological Evolution Bone and Bones - chemistry Bone and Bones - microbiology DNA - genetics Fatty Acids - analysis Microscopy, Electron Oceanospirillaceae - genetics Oceanospirillaceae - growth & development Oceanospirillaceae - ultrastructure Pacific Ocean Phylogeny Polychaeta - genetics Polychaeta - growth & development Polychaeta - ultrastructure RNA, Bacterial - genetics RNA, Ribosomal, 16S - genetics Symbiosis Whales |
title | Evolutionary innovation: a bone-eating marine symbiosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20innovation:%20a%20bone-eating%20marine%20symbiosis&rft.jtitle=Environmental%20microbiology&rft.au=Goffredi,%20Shana%20K.&rft.date=2005-09&rft.volume=7&rft.issue=9&rft.spage=1369&rft.epage=1378&rft.pages=1369-1378&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2005.00824.x&rft_dat=%3Cproquest_cross%3E17645616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17645616&rft_id=info:pmid/16104860&rfr_iscdi=true |