Evolutionary innovation: a bone-eating marine symbiosis

Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2005-09, Vol.7 (9), p.1369-1378
Hauptverfasser: Goffredi, Shana K., Orphan, Victoria J., Rouse, Greg W., Jahnke, Linda, Embaye, Tsegeria, Turk, Kendra, Lee, Ray, Vrijenhoek, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 9
container_start_page 1369
container_title Environmental microbiology
container_volume 7
creator Goffredi, Shana K.
Orphan, Victoria J.
Rouse, Greg W.
Jahnke, Linda
Embaye, Tsegeria
Turk, Kendra
Lee, Ray
Vrijenhoek, Robert C.
description Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.
doi_str_mv 10.1111/j.1462-2920.2005.00824.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17645616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17645616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</originalsourceid><addsrcrecordid>eNqNkV1PwjAUhhujEUX_gtmVd5un38N4owSRBDQmflw2W2lNcWy4MoR_bycEb-1Nz0nf57R5ilCEIcFhXc0SzASJSY9AQgB4ApASlqwP0Mn-4HBfY9JBp97PALCkEo5RBwsMLBVwguRgVRXN0lVlVm8iV5bVKmu76yiL8qo0sQlt-RHNs9qVJvKbee4q7_wZOrJZ4c35bu-i1_vBS_8hHj8NR_3bcaw5YBbnWmrOKJM2hx5MTWphii3TXAo95dhahkWmcUryHrcsJ4RaSg3VIFnOQfZoF11u5y7q6qsxfqnmzmtTFFlpqsYrLAXjAosQTLdBXVfe18aqRe3CqzcKg2qlqZlqfajWjWqlqV9pah3Qi90dTT430z9wZykEbraBb1eYzb8Hq8FkFIqAx1vc-aVZ7_Gs_lQifAhX749DldLn_tudmKgh_QG184jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17645616</pqid></control><display><type>article</type><title>Evolutionary innovation: a bone-eating marine symbiosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</creator><creatorcontrib>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</creatorcontrib><description>Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/j.1462-2920.2005.00824.x</identifier><identifier>PMID: 16104860</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Biodegradation, Environmental ; Biological Evolution ; Bone and Bones - chemistry ; Bone and Bones - microbiology ; DNA - genetics ; Fatty Acids - analysis ; Microscopy, Electron ; Oceanospirillaceae - genetics ; Oceanospirillaceae - growth &amp; development ; Oceanospirillaceae - ultrastructure ; Pacific Ocean ; Phylogeny ; Polychaeta - genetics ; Polychaeta - growth &amp; development ; Polychaeta - ultrastructure ; RNA, Bacterial - genetics ; RNA, Ribosomal, 16S - genetics ; Symbiosis ; Whales</subject><ispartof>Environmental microbiology, 2005-09, Vol.7 (9), p.1369-1378</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</citedby><cites>FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1462-2920.2005.00824.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1462-2920.2005.00824.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16104860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goffredi, Shana K.</creatorcontrib><creatorcontrib>Orphan, Victoria J.</creatorcontrib><creatorcontrib>Rouse, Greg W.</creatorcontrib><creatorcontrib>Jahnke, Linda</creatorcontrib><creatorcontrib>Embaye, Tsegeria</creatorcontrib><creatorcontrib>Turk, Kendra</creatorcontrib><creatorcontrib>Lee, Ray</creatorcontrib><creatorcontrib>Vrijenhoek, Robert C.</creatorcontrib><title>Evolutionary innovation: a bone-eating marine symbiosis</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</description><subject>Animals</subject><subject>Biodegradation, Environmental</subject><subject>Biological Evolution</subject><subject>Bone and Bones - chemistry</subject><subject>Bone and Bones - microbiology</subject><subject>DNA - genetics</subject><subject>Fatty Acids - analysis</subject><subject>Microscopy, Electron</subject><subject>Oceanospirillaceae - genetics</subject><subject>Oceanospirillaceae - growth &amp; development</subject><subject>Oceanospirillaceae - ultrastructure</subject><subject>Pacific Ocean</subject><subject>Phylogeny</subject><subject>Polychaeta - genetics</subject><subject>Polychaeta - growth &amp; development</subject><subject>Polychaeta - ultrastructure</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Symbiosis</subject><subject>Whales</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1PwjAUhhujEUX_gtmVd5un38N4owSRBDQmflw2W2lNcWy4MoR_bycEb-1Nz0nf57R5ilCEIcFhXc0SzASJSY9AQgB4ApASlqwP0Mn-4HBfY9JBp97PALCkEo5RBwsMLBVwguRgVRXN0lVlVm8iV5bVKmu76yiL8qo0sQlt-RHNs9qVJvKbee4q7_wZOrJZ4c35bu-i1_vBS_8hHj8NR_3bcaw5YBbnWmrOKJM2hx5MTWphii3TXAo95dhahkWmcUryHrcsJ4RaSg3VIFnOQfZoF11u5y7q6qsxfqnmzmtTFFlpqsYrLAXjAosQTLdBXVfe18aqRe3CqzcKg2qlqZlqfajWjWqlqV9pah3Qi90dTT430z9wZykEbraBb1eYzb8Hq8FkFIqAx1vc-aVZ7_Gs_lQifAhX749DldLn_tudmKgh_QG184jo</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Goffredi, Shana K.</creator><creator>Orphan, Victoria J.</creator><creator>Rouse, Greg W.</creator><creator>Jahnke, Linda</creator><creator>Embaye, Tsegeria</creator><creator>Turk, Kendra</creator><creator>Lee, Ray</creator><creator>Vrijenhoek, Robert C.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>200509</creationdate><title>Evolutionary innovation: a bone-eating marine symbiosis</title><author>Goffredi, Shana K. ; Orphan, Victoria J. ; Rouse, Greg W. ; Jahnke, Linda ; Embaye, Tsegeria ; Turk, Kendra ; Lee, Ray ; Vrijenhoek, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5014-bc7c54347fb090de8f0d1f4c576cd51ff416ac182b95f4b223f33e3c074b50793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biodegradation, Environmental</topic><topic>Biological Evolution</topic><topic>Bone and Bones - chemistry</topic><topic>Bone and Bones - microbiology</topic><topic>DNA - genetics</topic><topic>Fatty Acids - analysis</topic><topic>Microscopy, Electron</topic><topic>Oceanospirillaceae - genetics</topic><topic>Oceanospirillaceae - growth &amp; development</topic><topic>Oceanospirillaceae - ultrastructure</topic><topic>Pacific Ocean</topic><topic>Phylogeny</topic><topic>Polychaeta - genetics</topic><topic>Polychaeta - growth &amp; development</topic><topic>Polychaeta - ultrastructure</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Symbiosis</topic><topic>Whales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goffredi, Shana K.</creatorcontrib><creatorcontrib>Orphan, Victoria J.</creatorcontrib><creatorcontrib>Rouse, Greg W.</creatorcontrib><creatorcontrib>Jahnke, Linda</creatorcontrib><creatorcontrib>Embaye, Tsegeria</creatorcontrib><creatorcontrib>Turk, Kendra</creatorcontrib><creatorcontrib>Lee, Ray</creatorcontrib><creatorcontrib>Vrijenhoek, Robert C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goffredi, Shana K.</au><au>Orphan, Victoria J.</au><au>Rouse, Greg W.</au><au>Jahnke, Linda</au><au>Embaye, Tsegeria</au><au>Turk, Kendra</au><au>Lee, Ray</au><au>Vrijenhoek, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary innovation: a bone-eating marine symbiosis</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2005-09</date><risdate>2005</risdate><volume>7</volume><issue>9</issue><spage>1369</spage><epage>1378</epage><pages>1369-1378</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Symbiotic associations between microbes and invertebrates have resulted in some of the most unusual physiological and morphological adaptations that have evolved in the animal world. We document a new symbiosis between marine polychaetes of the genus Osedax and members of the bacterial group Oceanospirillales, known for heterotrophic degradation of complex organic compounds. These organisms were discovered living on the carcass of a grey whale at 2891 m depth in Monterey Canyon, off the coast of California. The mouthless and gutless worms are unique in their morphological specializations used to obtain nutrition from decomposing mammalian bones. Adult worms possess elaborate posterior root‐like extensions that invade whale bone and contain bacteriocytes that house intracellular symbionts. Stable isotopes and fatty acid analyses suggest that these unusual endosymbionts are likely responsible for the nutrition of this locally abundant and reproductively prolific deep‐sea worm.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16104860</pmid><doi>10.1111/j.1462-2920.2005.00824.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2005-09, Vol.7 (9), p.1369-1378
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_17645616
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biodegradation, Environmental
Biological Evolution
Bone and Bones - chemistry
Bone and Bones - microbiology
DNA - genetics
Fatty Acids - analysis
Microscopy, Electron
Oceanospirillaceae - genetics
Oceanospirillaceae - growth & development
Oceanospirillaceae - ultrastructure
Pacific Ocean
Phylogeny
Polychaeta - genetics
Polychaeta - growth & development
Polychaeta - ultrastructure
RNA, Bacterial - genetics
RNA, Ribosomal, 16S - genetics
Symbiosis
Whales
title Evolutionary innovation: a bone-eating marine symbiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20innovation:%20a%20bone-eating%20marine%20symbiosis&rft.jtitle=Environmental%20microbiology&rft.au=Goffredi,%20Shana%20K.&rft.date=2005-09&rft.volume=7&rft.issue=9&rft.spage=1369&rft.epage=1378&rft.pages=1369-1378&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/j.1462-2920.2005.00824.x&rft_dat=%3Cproquest_cross%3E17645616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17645616&rft_id=info:pmid/16104860&rfr_iscdi=true