Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘st...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2015-11, Vol.33 (11), p.667-678 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 11 |
container_start_page | 667 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 33 |
creator | Carvalho, Mariana R Lima, Daniela Reis, Rui L Correlo, Vitor M Oliveira, Joaquim M |
description | Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models. |
doi_str_mv | 10.1016/j.tibtech.2015.09.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764337338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S016777991500195X</els_id><sourcerecordid>1764337338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwBF4sIlYRzHcXwpoqV8SK04UCRu1sSegBcnKXZSqf--Xu0CUi-c5vLMOzPPMPaCQ8WBt2-21eL7hezPqgYuK9AVgH7ENrxTuhSg28dskzlVKqX1ETtOaQsAQmn-lB3VbQtCqnrDTi9uMay4-OlHcebnEReKHkNZ4OSKK2_jPITVO2_LM0zkCvG-uF7HORZXs6OQnrEnA4ZEzw_1hH37cHF9_qm8_PLx8_m7y9K2Si5lrSzyXkvRcKw7bp3rUMuhcRLrWsMACiUSCtVR36Nu-s6pxokBNZcgGy1O2Ot97k2cf6-UFjP6ZCkEnGhek-GqbYRQQnQZffUA3c5rnPJ2mRJc6QbaNlNyT-ULU4o0mJvoR4x3hoPZCTZbcxBsdoINaJMF576Xh_S1H8n97fpjNANv90C2Q7eeoknW02TJ-Uh2MW72_x1x-iDBBj95i-EX3VH6d41JtQHzdffl3ZOzKuBafhf33GKhtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731794066</pqid></control><display><type>article</type><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</creator><creatorcontrib>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</creatorcontrib><description>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2015.09.009</identifier><identifier>PMID: 26603572</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Advantages ; Angiogenesis ; Biocompatibility ; Biomaterials ; Biomedical materials ; Breast cancer ; cancer microenvironment ; Cell culture ; Collagen ; drug discovery ; Gene expression ; Heterogeneity ; Humans ; Hydrogels ; Internal Medicine ; Mechanical properties ; Medical research ; microfluidics ; Microfluidics - methods ; Models, Biological ; Neoplasms - physiopathology ; Ovarian cancer ; Physiology ; Polyethylene glycol ; Prostate cancer ; Studies ; Synthetic products ; Tissue Engineering - methods ; Tumors</subject><ispartof>Trends in biotechnology (Regular ed.), 2015-11, Vol.33 (11), p.667-678</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright Elsevier Limited Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</citedby><cites>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1731794066?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002,64392,64394,64396,72476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26603572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Mariana R</creatorcontrib><creatorcontrib>Lima, Daniela</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Correlo, Vitor M</creatorcontrib><creatorcontrib>Oliveira, Joaquim M</creatorcontrib><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</description><subject>Advantages</subject><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Breast cancer</subject><subject>cancer microenvironment</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>drug discovery</subject><subject>Gene expression</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Internal Medicine</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>microfluidics</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Neoplasms - physiopathology</subject><subject>Ovarian cancer</subject><subject>Physiology</subject><subject>Polyethylene glycol</subject><subject>Prostate cancer</subject><subject>Studies</subject><subject>Synthetic products</subject><subject>Tissue Engineering - methods</subject><subject>Tumors</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwBF4sIlYRzHcXwpoqV8SK04UCRu1sSegBcnKXZSqf--Xu0CUi-c5vLMOzPPMPaCQ8WBt2-21eL7hezPqgYuK9AVgH7ENrxTuhSg28dskzlVKqX1ETtOaQsAQmn-lB3VbQtCqnrDTi9uMay4-OlHcebnEReKHkNZ4OSKK2_jPITVO2_LM0zkCvG-uF7HORZXs6OQnrEnA4ZEzw_1hH37cHF9_qm8_PLx8_m7y9K2Si5lrSzyXkvRcKw7bp3rUMuhcRLrWsMACiUSCtVR36Nu-s6pxokBNZcgGy1O2Ot97k2cf6-UFjP6ZCkEnGhek-GqbYRQQnQZffUA3c5rnPJ2mRJc6QbaNlNyT-ULU4o0mJvoR4x3hoPZCTZbcxBsdoINaJMF576Xh_S1H8n97fpjNANv90C2Q7eeoknW02TJ-Uh2MW72_x1x-iDBBj95i-EX3VH6d41JtQHzdffl3ZOzKuBafhf33GKhtQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Carvalho, Mariana R</creator><creator>Lima, Daniela</creator><creator>Reis, Rui L</creator><creator>Correlo, Vitor M</creator><creator>Oliveira, Joaquim M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151101</creationdate><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><author>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advantages</topic><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Breast cancer</topic><topic>cancer microenvironment</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>drug discovery</topic><topic>Gene expression</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Internal Medicine</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>microfluidics</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Neoplasms - physiopathology</topic><topic>Ovarian cancer</topic><topic>Physiology</topic><topic>Polyethylene glycol</topic><topic>Prostate cancer</topic><topic>Studies</topic><topic>Synthetic products</topic><topic>Tissue Engineering - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Mariana R</creatorcontrib><creatorcontrib>Lima, Daniela</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Correlo, Vitor M</creatorcontrib><creatorcontrib>Oliveira, Joaquim M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Mariana R</au><au>Lima, Daniela</au><au>Reis, Rui L</au><au>Correlo, Vitor M</au><au>Oliveira, Joaquim M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>11</issue><spage>667</spage><epage>678</epage><pages>667-678</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26603572</pmid><doi>10.1016/j.tibtech.2015.09.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2015-11, Vol.33 (11), p.667-678 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_1764337338 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Advantages Angiogenesis Biocompatibility Biomaterials Biomedical materials Breast cancer cancer microenvironment Cell culture Collagen drug discovery Gene expression Heterogeneity Humans Hydrogels Internal Medicine Mechanical properties Medical research microfluidics Microfluidics - methods Models, Biological Neoplasms - physiopathology Ovarian cancer Physiology Polyethylene glycol Prostate cancer Studies Synthetic products Tissue Engineering - methods Tumors |
title | Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Biomaterial-%20and%20Microfluidic-Based%203D%20Tumor%20Models&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Carvalho,%20Mariana%20R&rft.date=2015-11-01&rft.volume=33&rft.issue=11&rft.spage=667&rft.epage=678&rft.pages=667-678&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2015.09.009&rft_dat=%3Cproquest_cross%3E1764337338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731794066&rft_id=info:pmid/26603572&rft_els_id=1_s2_0_S016777991500195X&rfr_iscdi=true |