Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models

Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2015-11, Vol.33 (11), p.667-678
Hauptverfasser: Carvalho, Mariana R, Lima, Daniela, Reis, Rui L, Correlo, Vitor M, Oliveira, Joaquim M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 11
container_start_page 667
container_title Trends in biotechnology (Regular ed.)
container_volume 33
creator Carvalho, Mariana R
Lima, Daniela
Reis, Rui L
Correlo, Vitor M
Oliveira, Joaquim M
description Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.
doi_str_mv 10.1016/j.tibtech.2015.09.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1764337338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S016777991500195X</els_id><sourcerecordid>1764337338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwBF4sIlYRzHcXwpoqV8SK04UCRu1sSegBcnKXZSqf--Xu0CUi-c5vLMOzPPMPaCQ8WBt2-21eL7hezPqgYuK9AVgH7ENrxTuhSg28dskzlVKqX1ETtOaQsAQmn-lB3VbQtCqnrDTi9uMay4-OlHcebnEReKHkNZ4OSKK2_jPITVO2_LM0zkCvG-uF7HORZXs6OQnrEnA4ZEzw_1hH37cHF9_qm8_PLx8_m7y9K2Si5lrSzyXkvRcKw7bp3rUMuhcRLrWsMACiUSCtVR36Nu-s6pxokBNZcgGy1O2Ot97k2cf6-UFjP6ZCkEnGhek-GqbYRQQnQZffUA3c5rnPJ2mRJc6QbaNlNyT-ULU4o0mJvoR4x3hoPZCTZbcxBsdoINaJMF576Xh_S1H8n97fpjNANv90C2Q7eeoknW02TJ-Uh2MW72_x1x-iDBBj95i-EX3VH6d41JtQHzdffl3ZOzKuBafhf33GKhtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1731794066</pqid></control><display><type>article</type><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</creator><creatorcontrib>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</creatorcontrib><description>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2015.09.009</identifier><identifier>PMID: 26603572</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Advantages ; Angiogenesis ; Biocompatibility ; Biomaterials ; Biomedical materials ; Breast cancer ; cancer microenvironment ; Cell culture ; Collagen ; drug discovery ; Gene expression ; Heterogeneity ; Humans ; Hydrogels ; Internal Medicine ; Mechanical properties ; Medical research ; microfluidics ; Microfluidics - methods ; Models, Biological ; Neoplasms - physiopathology ; Ovarian cancer ; Physiology ; Polyethylene glycol ; Prostate cancer ; Studies ; Synthetic products ; Tissue Engineering - methods ; Tumors</subject><ispartof>Trends in biotechnology (Regular ed.), 2015-11, Vol.33 (11), p.667-678</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright Elsevier Limited Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</citedby><cites>FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1731794066?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002,64392,64394,64396,72476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26603572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Mariana R</creatorcontrib><creatorcontrib>Lima, Daniela</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Correlo, Vitor M</creatorcontrib><creatorcontrib>Oliveira, Joaquim M</creatorcontrib><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</description><subject>Advantages</subject><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Breast cancer</subject><subject>cancer microenvironment</subject><subject>Cell culture</subject><subject>Collagen</subject><subject>drug discovery</subject><subject>Gene expression</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Internal Medicine</subject><subject>Mechanical properties</subject><subject>Medical research</subject><subject>microfluidics</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Neoplasms - physiopathology</subject><subject>Ovarian cancer</subject><subject>Physiology</subject><subject>Polyethylene glycol</subject><subject>Prostate cancer</subject><subject>Studies</subject><subject>Synthetic products</subject><subject>Tissue Engineering - methods</subject><subject>Tumors</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwBF4sIlYRzHcXwpoqV8SK04UCRu1sSegBcnKXZSqf--Xu0CUi-c5vLMOzPPMPaCQ8WBt2-21eL7hezPqgYuK9AVgH7ENrxTuhSg28dskzlVKqX1ETtOaQsAQmn-lB3VbQtCqnrDTi9uMay4-OlHcebnEReKHkNZ4OSKK2_jPITVO2_LM0zkCvG-uF7HORZXs6OQnrEnA4ZEzw_1hH37cHF9_qm8_PLx8_m7y9K2Si5lrSzyXkvRcKw7bp3rUMuhcRLrWsMACiUSCtVR36Nu-s6pxokBNZcgGy1O2Ot97k2cf6-UFjP6ZCkEnGhek-GqbYRQQnQZffUA3c5rnPJ2mRJc6QbaNlNyT-ULU4o0mJvoR4x3hoPZCTZbcxBsdoINaJMF576Xh_S1H8n97fpjNANv90C2Q7eeoknW02TJ-Uh2MW72_x1x-iDBBj95i-EX3VH6d41JtQHzdffl3ZOzKuBafhf33GKhtQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Carvalho, Mariana R</creator><creator>Lima, Daniela</creator><creator>Reis, Rui L</creator><creator>Correlo, Vitor M</creator><creator>Oliveira, Joaquim M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151101</creationdate><title>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</title><author>Carvalho, Mariana R ; Lima, Daniela ; Reis, Rui L ; Correlo, Vitor M ; Oliveira, Joaquim M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-27ca1b95341a281cdd8a95f4d5a2290f07a5aea378ebba94b8d74d3fa91505493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advantages</topic><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Breast cancer</topic><topic>cancer microenvironment</topic><topic>Cell culture</topic><topic>Collagen</topic><topic>drug discovery</topic><topic>Gene expression</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Internal Medicine</topic><topic>Mechanical properties</topic><topic>Medical research</topic><topic>microfluidics</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Neoplasms - physiopathology</topic><topic>Ovarian cancer</topic><topic>Physiology</topic><topic>Polyethylene glycol</topic><topic>Prostate cancer</topic><topic>Studies</topic><topic>Synthetic products</topic><topic>Tissue Engineering - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Mariana R</creatorcontrib><creatorcontrib>Lima, Daniela</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Correlo, Vitor M</creatorcontrib><creatorcontrib>Oliveira, Joaquim M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Mariana R</au><au>Lima, Daniela</au><au>Reis, Rui L</au><au>Correlo, Vitor M</au><au>Oliveira, Joaquim M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>33</volume><issue>11</issue><spage>667</spage><epage>678</epage><pages>667-678</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase over the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. Here, we review the current ‘state-of-the-art’ in 3D tissue-engineering (TE) models developed for, and used in, cancer research. We assess the potential for scaffold-based TE models and microfluidics to fill the gap between 2D models and clinical application. We also discuss recent advances in combining the principles of 3D TE models and microfluidics, with a special focus on biomaterials and the most promising chip-based 3D models.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26603572</pmid><doi>10.1016/j.tibtech.2015.09.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2015-11, Vol.33 (11), p.667-678
issn 0167-7799
1879-3096
language eng
recordid cdi_proquest_miscellaneous_1764337338
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Advantages
Angiogenesis
Biocompatibility
Biomaterials
Biomedical materials
Breast cancer
cancer microenvironment
Cell culture
Collagen
drug discovery
Gene expression
Heterogeneity
Humans
Hydrogels
Internal Medicine
Mechanical properties
Medical research
microfluidics
Microfluidics - methods
Models, Biological
Neoplasms - physiopathology
Ovarian cancer
Physiology
Polyethylene glycol
Prostate cancer
Studies
Synthetic products
Tissue Engineering - methods
Tumors
title Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20Biomaterial-%20and%20Microfluidic-Based%203D%20Tumor%20Models&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Carvalho,%20Mariana%20R&rft.date=2015-11-01&rft.volume=33&rft.issue=11&rft.spage=667&rft.epage=678&rft.pages=667-678&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2015.09.009&rft_dat=%3Cproquest_cross%3E1764337338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1731794066&rft_id=info:pmid/26603572&rft_els_id=1_s2_0_S016777991500195X&rfr_iscdi=true