Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin
The capacity of fluorescent colloidal semiconductor nanocrystals for commercial application has led to the development of nanocrystals with nontoxic constituent elements as replacements for the currently available Cd- and Pb-containing systems. CuInS2 is a good candidate material because of its dire...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2016-02, Vol.7 (3), p.572-583 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The capacity of fluorescent colloidal semiconductor nanocrystals for commercial application has led to the development of nanocrystals with nontoxic constituent elements as replacements for the currently available Cd- and Pb-containing systems. CuInS2 is a good candidate material because of its direct band gap in the near-infrared spectral region and large optical absorption coefficient. The ternary nature, flexible stoichiometry, and different crystal structures of CuInS2 lead to a range of optoelectronic properties, which have been challenging to elucidate. In this Perspective, the optoelectronic properties of CuInS2 nanocrystals are described and what is known of their origin is discussed. We begin with an overview of their synthesis, structure, and mechanism of formation. A complete discussion of the tunable luminescence properties and the radiative decay mechanism of this system is then presented. Finally, progress toward application of these “green” nanocrystals is summarized. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.5b02211 |