From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes

We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-02, Vol.138 (4), p.1420-1429
Hauptverfasser: Chan, Bun, Kawashima, Yukio, Katouda, Michio, Nakajima, Takahito, Hirao, Kimihiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 4
container_start_page 1420
container_title Journal of the American Chemical Society
container_volume 138
creator Chan, Bun
Kawashima, Yukio
Katouda, Michio
Nakajima, Takahito
Hirao, Kimihiko
description We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol–1. In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3­(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula Δf H per carbon = 722n –0.72 + 5.2 kJ mol–1 (n = the number of carbon atoms), which enables an estimation of Δf H for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in “low-strain” regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.
doi_str_mv 10.1021/jacs.5b12518
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762685786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762685786</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-2c6181b1d5c28b812b4144ae4bff89f807868e26092fb004631cf1acb0ddf3683</originalsourceid><addsrcrecordid>eNpFkL1PwzAUxC0EoqWwMSOPLCl-TuI4bCgiFKkSQsBsOYndpkri4o-h_z1JKWJ6Or3T6e6H0C2QJRAKDztZu2VaAU2Bn6E5pJREKVB2juaEEBplnMUzdOXcbpQJ5XCJZpRleZ4lZI5MaU2PC0awN_h10O3Q-sMjXku7UdFHLTuF34McfBhNW9W3ztsDLmRXh0761gwOG439VuGVkv4oSmP742sSq3azVRaXoeuUVYNy1-hCy86pm9NdoK_y-bNYReu3l9fiaR3JGIiPaM2AQwVNWlNecaBVAkkiVVJpzXPNybiKK8pITnU1zmIx1BpkXZGm0THj8QLd_-burfkOynkxdq9V18lBmeAEZIwynk5wFujuZA1Vrxqxt20v7UH8QfrPGkmLnQl2GJsLIGLiLyb-4sQ__gHpbXVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762685786</pqid></control><display><type>article</type><title>From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes</title><source>ACS Publications</source><creator>Chan, Bun ; Kawashima, Yukio ; Katouda, Michio ; Nakajima, Takahito ; Hirao, Kimihiko</creator><creatorcontrib>Chan, Bun ; Kawashima, Yukio ; Katouda, Michio ; Nakajima, Takahito ; Hirao, Kimihiko</creatorcontrib><description>We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol–1. In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3­(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula Δf H per carbon = 722n –0.72 + 5.2 kJ mol–1 (n = the number of carbon atoms), which enables an estimation of Δf H for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in “low-strain” regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b12518</identifier><identifier>PMID: 26799740</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2016-02, Vol.138 (4), p.1420-1429</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b12518$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b12518$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26799740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Bun</creatorcontrib><creatorcontrib>Kawashima, Yukio</creatorcontrib><creatorcontrib>Katouda, Michio</creatorcontrib><creatorcontrib>Nakajima, Takahito</creatorcontrib><creatorcontrib>Hirao, Kimihiko</creatorcontrib><title>From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol–1. In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3­(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula Δf H per carbon = 722n –0.72 + 5.2 kJ mol–1 (n = the number of carbon atoms), which enables an estimation of Δf H for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in “low-strain” regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkL1PwzAUxC0EoqWwMSOPLCl-TuI4bCgiFKkSQsBsOYndpkri4o-h_z1JKWJ6Or3T6e6H0C2QJRAKDztZu2VaAU2Bn6E5pJREKVB2juaEEBplnMUzdOXcbpQJ5XCJZpRleZ4lZI5MaU2PC0awN_h10O3Q-sMjXku7UdFHLTuF34McfBhNW9W3ztsDLmRXh0761gwOG439VuGVkv4oSmP742sSq3azVRaXoeuUVYNy1-hCy86pm9NdoK_y-bNYReu3l9fiaR3JGIiPaM2AQwVNWlNecaBVAkkiVVJpzXPNybiKK8pITnU1zmIx1BpkXZGm0THj8QLd_-burfkOynkxdq9V18lBmeAEZIwynk5wFujuZA1Vrxqxt20v7UH8QfrPGkmLnQl2GJsLIGLiLyb-4sQ__gHpbXVc</recordid><startdate>20160203</startdate><enddate>20160203</enddate><creator>Chan, Bun</creator><creator>Kawashima, Yukio</creator><creator>Katouda, Michio</creator><creator>Nakajima, Takahito</creator><creator>Hirao, Kimihiko</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160203</creationdate><title>From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes</title><author>Chan, Bun ; Kawashima, Yukio ; Katouda, Michio ; Nakajima, Takahito ; Hirao, Kimihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-2c6181b1d5c28b812b4144ae4bff89f807868e26092fb004631cf1acb0ddf3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Bun</creatorcontrib><creatorcontrib>Kawashima, Yukio</creatorcontrib><creatorcontrib>Katouda, Michio</creatorcontrib><creatorcontrib>Nakajima, Takahito</creatorcontrib><creatorcontrib>Hirao, Kimihiko</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Bun</au><au>Kawashima, Yukio</au><au>Katouda, Michio</au><au>Nakajima, Takahito</au><au>Hirao, Kimihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2016-02-03</date><risdate>2016</risdate><volume>138</volume><issue>4</issue><spage>1420</spage><epage>1429</epage><pages>1420-1429</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol–1. In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3­(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula Δf H per carbon = 722n –0.72 + 5.2 kJ mol–1 (n = the number of carbon atoms), which enables an estimation of Δf H for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in “low-strain” regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26799740</pmid><doi>10.1021/jacs.5b12518</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2016-02, Vol.138 (4), p.1420-1429
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1762685786
source ACS Publications
title From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20C60%20to%20Infinity:%20Large-Scale%20Quantum%20Chemistry%20Calculations%20of%20the%20Heats%20of%20Formation%20of%20Higher%20Fullerenes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chan,%20Bun&rft.date=2016-02-03&rft.volume=138&rft.issue=4&rft.spage=1420&rft.epage=1429&rft.pages=1420-1429&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b12518&rft_dat=%3Cproquest_pubme%3E1762685786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762685786&rft_id=info:pmid/26799740&rfr_iscdi=true