A quantitative comparison of dispersed spore/pollen and plant megafossil assemblages from a Middle Jurassic plant bed from Yorkshire, UK
Detailed quantitative data has previously been collected from plant megafossil assemblages from a Middle Jurassic (Aalenian) plant bed from Hasty Bank, North Yorkshire, UK. We conducted a similar analysis of palynological dispersed sporomorph (spore and pollen) assemblages collected from the same se...
Gespeichert in:
Veröffentlicht in: | Paleobiology 2015-09, Vol.41 (4), p.640-660 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detailed quantitative data has previously been collected from plant megafossil assemblages from a Middle Jurassic (Aalenian) plant bed from Hasty Bank, North Yorkshire, UK. We conducted a similar analysis of palynological dispersed sporomorph (spore and pollen) assemblages collected from the same section using the same sampling regime: 67 sporomorph taxa were recorded from 50 samples taken at 10 cm intervals through the plant bed. Basic palynofacies analysis was also undertaken on each sample. Both dispersed sporomorph and plant megafossil assemblages display consistent changes in composition, diversity (richness), and abundance through time. However, the dispersed sporomorph and plant megafossil records provide conflicting evidence for the nature of parent vegetation. Specifically, conifers and ferns are underrepresented in plant megafossil assemblages, bryophytes and lycopsids are represented only in sporomorph assemblages, and sphenophytes, pteridosperms, Caytoniales, Cycadales, Ginkgoales and Bennettitales are comparatively underrepresented in sporomorph assemblages. Combined multivariate analysis (correspondence analysis and nonmetric multidimensional scaling) of sporomorph occurrence/abundance data demonstrates that temporal variation in sporomorph assemblages is the result of depositional change through the plant bed. The reproductive strategies of parent plants are considered to be a principal factor in shaping many of the major abundance and diversity irregularities between dispersed sporomorph and plant megafossil data sets that seemingly reflects different parent vegetation. Preferential occurrence/preservation of sporomorphs and equivalent parent plants is a consequence of a complex array of biological, ecological, geographical, taphonomic, and depositional factors that act inconsistently between and within fossil assemblages, which results in notable discrepancies between data sets. |
---|---|
ISSN: | 0094-8373 1938-5331 |
DOI: | 10.1017/pab.2015.27 |