Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle
The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzy...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and microbiology 2016, Vol.52 (1), p.15-22 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Applied biochemistry and microbiology |
container_volume | 52 |
creator | Gulevich, A. Yu Skorokhodova, A. Yu Stasenko, A. A Shakulov, R. S Debabov, V. G |
description | The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol. |
doi_str_mv | 10.1134/S0003683816010051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762374133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762374133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</originalsourceid><addsrcrecordid>eNp9UL1OwzAYtBBIlMIDMOGRgYAdJ44zooo_qYihdLZsx25cpXGxHUQknooH4ZlwVTYkpvtOd_dJdwCcY3SNMSluFgghQhlhmCKMUIkPwCSdLCMoLw7BZCdnO_0YnISwTrSmrJ6Az2cdhXSdVVD3K9tr7W2_gs7Au6DaRFRrBVTJAI3zEF-RTA5R9LqxroPSujD2sdXBBhhb74ZVm1BD279rH3UDjYhxhELZBn5_Ze7DNiJa10M1qk6fgiMjuqDPfnEKlvd3r7PHbP7y8DS7nWeKFGXMcFWxsmzqkhSIGVoSJEpT06ZOdQyVlSKyaGQlaypFwRRjuaBUM6oolWkKSabgcv93693boEPkGxuU7rrUww2B44rmpCowIcmK91blXQheG771diP8yDHiu6X5n6VTJt9nwnY3nvZ87Qbfp0b_hi72ISMcFytvA18ucpR0hApcpm4_3qWKbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762374133</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</creator><creatorcontrib>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</creatorcontrib><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683816010051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>acetyl-CoA acetyltransferase ; acyl coenzyme A ; alcohol dehydrogenase ; aldehyde dehydrogenase ; beta oxidation ; Biochemistry ; Biomedical and Life Sciences ; biosynthesis ; Escherichia coli ; ethanol ; fatty acids ; fermentation ; gene expression ; glucose ; Life Sciences ; Medical Microbiology ; metabolic engineering ; Microbiology ; operon ; pyruvate dehydrogenase (lipoamide) ; regulon</subject><ispartof>Applied biochemistry and microbiology, 2016, Vol.52 (1), p.15-22</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</citedby><cites>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0003683816010051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0003683816010051$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gulevich, A. Yu</creatorcontrib><creatorcontrib>Skorokhodova, A. Yu</creatorcontrib><creatorcontrib>Stasenko, A. A</creatorcontrib><creatorcontrib>Shakulov, R. S</creatorcontrib><creatorcontrib>Debabov, V. G</creatorcontrib><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><title>Applied biochemistry and microbiology</title><addtitle>Appl Biochem Microbiol</addtitle><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><subject>acetyl-CoA acetyltransferase</subject><subject>acyl coenzyme A</subject><subject>alcohol dehydrogenase</subject><subject>aldehyde dehydrogenase</subject><subject>beta oxidation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>biosynthesis</subject><subject>Escherichia coli</subject><subject>ethanol</subject><subject>fatty acids</subject><subject>fermentation</subject><subject>gene expression</subject><subject>glucose</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>metabolic engineering</subject><subject>Microbiology</subject><subject>operon</subject><subject>pyruvate dehydrogenase (lipoamide)</subject><subject>regulon</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UL1OwzAYtBBIlMIDMOGRgYAdJ44zooo_qYihdLZsx25cpXGxHUQknooH4ZlwVTYkpvtOd_dJdwCcY3SNMSluFgghQhlhmCKMUIkPwCSdLCMoLw7BZCdnO_0YnISwTrSmrJ6Az2cdhXSdVVD3K9tr7W2_gs7Au6DaRFRrBVTJAI3zEF-RTA5R9LqxroPSujD2sdXBBhhb74ZVm1BD279rH3UDjYhxhELZBn5_Ze7DNiJa10M1qk6fgiMjuqDPfnEKlvd3r7PHbP7y8DS7nWeKFGXMcFWxsmzqkhSIGVoSJEpT06ZOdQyVlSKyaGQlaypFwRRjuaBUM6oolWkKSabgcv93693boEPkGxuU7rrUww2B44rmpCowIcmK91blXQheG771diP8yDHiu6X5n6VTJt9nwnY3nvZ87Qbfp0b_hi72ISMcFytvA18ucpR0hApcpm4_3qWKbw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Gulevich, A. Yu</creator><creator>Skorokhodova, A. Yu</creator><creator>Stasenko, A. A</creator><creator>Shakulov, R. S</creator><creator>Debabov, V. G</creator><general>Pleiades Publishing</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2016</creationdate><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><author>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetyl-CoA acetyltransferase</topic><topic>acyl coenzyme A</topic><topic>alcohol dehydrogenase</topic><topic>aldehyde dehydrogenase</topic><topic>beta oxidation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>biosynthesis</topic><topic>Escherichia coli</topic><topic>ethanol</topic><topic>fatty acids</topic><topic>fermentation</topic><topic>gene expression</topic><topic>glucose</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>metabolic engineering</topic><topic>Microbiology</topic><topic>operon</topic><topic>pyruvate dehydrogenase (lipoamide)</topic><topic>regulon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulevich, A. Yu</creatorcontrib><creatorcontrib>Skorokhodova, A. Yu</creatorcontrib><creatorcontrib>Stasenko, A. A</creatorcontrib><creatorcontrib>Shakulov, R. S</creatorcontrib><creatorcontrib>Debabov, V. G</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulevich, A. Yu</au><au>Skorokhodova, A. Yu</au><au>Stasenko, A. A</au><au>Shakulov, R. S</au><au>Debabov, V. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</atitle><jtitle>Applied biochemistry and microbiology</jtitle><stitle>Appl Biochem Microbiol</stitle><date>2016</date><risdate>2016</risdate><volume>52</volume><issue>1</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0003683816010051</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6838 |
ispartof | Applied biochemistry and microbiology, 2016, Vol.52 (1), p.15-22 |
issn | 0003-6838 1608-3024 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762374133 |
source | SpringerLink Journals - AutoHoldings |
subjects | acetyl-CoA acetyltransferase acyl coenzyme A alcohol dehydrogenase aldehyde dehydrogenase beta oxidation Biochemistry Biomedical and Life Sciences biosynthesis Escherichia coli ethanol fatty acids fermentation gene expression glucose Life Sciences Medical Microbiology metabolic engineering Microbiology operon pyruvate dehydrogenase (lipoamide) regulon |
title | Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%201,3-butanediol%20biosynthesis%20through%20the%20inverted%20fatty%20acid%20%CE%B2-oxidation%20cycle&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Gulevich,%20A.%20Yu&rft.date=2016&rft.volume=52&rft.issue=1&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683816010051&rft_dat=%3Cproquest_cross%3E1762374133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762374133&rft_id=info:pmid/&rfr_iscdi=true |