Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle

The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and microbiology 2016, Vol.52 (1), p.15-22
Hauptverfasser: Gulevich, A. Yu, Skorokhodova, A. Yu, Stasenko, A. A, Shakulov, R. S, Debabov, V. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 15
container_title Applied biochemistry and microbiology
container_volume 52
creator Gulevich, A. Yu
Skorokhodova, A. Yu
Stasenko, A. A
Shakulov, R. S
Debabov, V. G
description The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.
doi_str_mv 10.1134/S0003683816010051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762374133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762374133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</originalsourceid><addsrcrecordid>eNp9UL1OwzAYtBBIlMIDMOGRgYAdJ44zooo_qYihdLZsx25cpXGxHUQknooH4ZlwVTYkpvtOd_dJdwCcY3SNMSluFgghQhlhmCKMUIkPwCSdLCMoLw7BZCdnO_0YnISwTrSmrJ6Az2cdhXSdVVD3K9tr7W2_gs7Au6DaRFRrBVTJAI3zEF-RTA5R9LqxroPSujD2sdXBBhhb74ZVm1BD279rH3UDjYhxhELZBn5_Ze7DNiJa10M1qk6fgiMjuqDPfnEKlvd3r7PHbP7y8DS7nWeKFGXMcFWxsmzqkhSIGVoSJEpT06ZOdQyVlSKyaGQlaypFwRRjuaBUM6oolWkKSabgcv93693boEPkGxuU7rrUww2B44rmpCowIcmK91blXQheG771diP8yDHiu6X5n6VTJt9nwnY3nvZ87Qbfp0b_hi72ISMcFytvA18ucpR0hApcpm4_3qWKbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762374133</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</creator><creatorcontrib>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</creatorcontrib><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><identifier>ISSN: 0003-6838</identifier><identifier>EISSN: 1608-3024</identifier><identifier>DOI: 10.1134/S0003683816010051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>acetyl-CoA acetyltransferase ; acyl coenzyme A ; alcohol dehydrogenase ; aldehyde dehydrogenase ; beta oxidation ; Biochemistry ; Biomedical and Life Sciences ; biosynthesis ; Escherichia coli ; ethanol ; fatty acids ; fermentation ; gene expression ; glucose ; Life Sciences ; Medical Microbiology ; metabolic engineering ; Microbiology ; operon ; pyruvate dehydrogenase (lipoamide) ; regulon</subject><ispartof>Applied biochemistry and microbiology, 2016, Vol.52 (1), p.15-22</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</citedby><cites>FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0003683816010051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0003683816010051$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gulevich, A. Yu</creatorcontrib><creatorcontrib>Skorokhodova, A. Yu</creatorcontrib><creatorcontrib>Stasenko, A. A</creatorcontrib><creatorcontrib>Shakulov, R. S</creatorcontrib><creatorcontrib>Debabov, V. G</creatorcontrib><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><title>Applied biochemistry and microbiology</title><addtitle>Appl Biochem Microbiol</addtitle><description>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</description><subject>acetyl-CoA acetyltransferase</subject><subject>acyl coenzyme A</subject><subject>alcohol dehydrogenase</subject><subject>aldehyde dehydrogenase</subject><subject>beta oxidation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>biosynthesis</subject><subject>Escherichia coli</subject><subject>ethanol</subject><subject>fatty acids</subject><subject>fermentation</subject><subject>gene expression</subject><subject>glucose</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>metabolic engineering</subject><subject>Microbiology</subject><subject>operon</subject><subject>pyruvate dehydrogenase (lipoamide)</subject><subject>regulon</subject><issn>0003-6838</issn><issn>1608-3024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UL1OwzAYtBBIlMIDMOGRgYAdJ44zooo_qYihdLZsx25cpXGxHUQknooH4ZlwVTYkpvtOd_dJdwCcY3SNMSluFgghQhlhmCKMUIkPwCSdLCMoLw7BZCdnO_0YnISwTrSmrJ6Az2cdhXSdVVD3K9tr7W2_gs7Au6DaRFRrBVTJAI3zEF-RTA5R9LqxroPSujD2sdXBBhhb74ZVm1BD279rH3UDjYhxhELZBn5_Ze7DNiJa10M1qk6fgiMjuqDPfnEKlvd3r7PHbP7y8DS7nWeKFGXMcFWxsmzqkhSIGVoSJEpT06ZOdQyVlSKyaGQlaypFwRRjuaBUM6oolWkKSabgcv93693boEPkGxuU7rrUww2B44rmpCowIcmK91blXQheG771diP8yDHiu6X5n6VTJt9nwnY3nvZ87Qbfp0b_hi72ISMcFytvA18ucpR0hApcpm4_3qWKbw</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Gulevich, A. Yu</creator><creator>Skorokhodova, A. Yu</creator><creator>Stasenko, A. A</creator><creator>Shakulov, R. S</creator><creator>Debabov, V. G</creator><general>Pleiades Publishing</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2016</creationdate><title>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</title><author>Gulevich, A. Yu ; Skorokhodova, A. Yu ; Stasenko, A. A ; Shakulov, R. S ; Debabov, V. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-177855d953408f6530a5f96d9838f6b7c3b4db7b96ba48c882a66e86c66b005b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>acetyl-CoA acetyltransferase</topic><topic>acyl coenzyme A</topic><topic>alcohol dehydrogenase</topic><topic>aldehyde dehydrogenase</topic><topic>beta oxidation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>biosynthesis</topic><topic>Escherichia coli</topic><topic>ethanol</topic><topic>fatty acids</topic><topic>fermentation</topic><topic>gene expression</topic><topic>glucose</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>metabolic engineering</topic><topic>Microbiology</topic><topic>operon</topic><topic>pyruvate dehydrogenase (lipoamide)</topic><topic>regulon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulevich, A. Yu</creatorcontrib><creatorcontrib>Skorokhodova, A. Yu</creatorcontrib><creatorcontrib>Stasenko, A. A</creatorcontrib><creatorcontrib>Shakulov, R. S</creatorcontrib><creatorcontrib>Debabov, V. G</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Applied biochemistry and microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulevich, A. Yu</au><au>Skorokhodova, A. Yu</au><au>Stasenko, A. A</au><au>Shakulov, R. S</au><au>Debabov, V. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle</atitle><jtitle>Applied biochemistry and microbiology</jtitle><stitle>Appl Biochem Microbiol</stitle><date>2016</date><risdate>2016</risdate><volume>52</volume><issue>1</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>0003-6838</issn><eissn>1608-3024</eissn><abstract>The feasibility of 1,3-butanediol biosynthesis through the inverted cycle of fatty acid β-oxidation in Escherichia coli cells was investigated by the rational metabolic engineering approach. CoA-dependent aldehyde dehydrogenase MhpF and alcohol dehydrogenases FucO and YqhD were used as terminal enzymes catalyzing conversion of 3-hydroxybutyryl-CoA to 1,3-butanediol. Constitutive expression of the corresponding genes in E. coli strains, which are deficient in mixed acid fermentation pathways and expressing fàd regulon genes under control of P ₜᵣc₋ᵢdₑₐₗ₋₄ promoter, did not lead to the synthesis of 1,3-butanediol during anaerobic glucose utilization. Additional inactivation of fadE and ydiO genes, encoding acyl-CoA dehydrogenases, also did not cause synthesis of the target product. Constitutive expression of aceEF-lpdA operon genes encoding enzymes of pyruvate dehydrogenase complex led to an increase in anaerobic synthesis of ethanol. Synthesis of 1,3-butanediol was observed with the overexpression of acetyl-CoA C-acetyltransferase AtoB. Constitutive expression of atoB gene in a strain with a basal expression of alcohol/aldehyde dehydrogenase leads to synthesis of 0.3 mM of 1,3-butanediol.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0003683816010051</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6838
ispartof Applied biochemistry and microbiology, 2016, Vol.52 (1), p.15-22
issn 0003-6838
1608-3024
language eng
recordid cdi_proquest_miscellaneous_1762374133
source SpringerLink Journals - AutoHoldings
subjects acetyl-CoA acetyltransferase
acyl coenzyme A
alcohol dehydrogenase
aldehyde dehydrogenase
beta oxidation
Biochemistry
Biomedical and Life Sciences
biosynthesis
Escherichia coli
ethanol
fatty acids
fermentation
gene expression
glucose
Life Sciences
Medical Microbiology
metabolic engineering
Microbiology
operon
pyruvate dehydrogenase (lipoamide)
regulon
title Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%201,3-butanediol%20biosynthesis%20through%20the%20inverted%20fatty%20acid%20%CE%B2-oxidation%20cycle&rft.jtitle=Applied%20biochemistry%20and%20microbiology&rft.au=Gulevich,%20A.%20Yu&rft.date=2016&rft.volume=52&rft.issue=1&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=0003-6838&rft.eissn=1608-3024&rft_id=info:doi/10.1134/S0003683816010051&rft_dat=%3Cproquest_cross%3E1762374133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762374133&rft_id=info:pmid/&rfr_iscdi=true