ARWAR: A network approach for predicting Adverse Drug Reactions
Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships amo...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2016-01, Vol.68, p.101-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | Computers in biology and medicine |
container_volume | 68 |
creator | Rahmani, Hossein Weiss, Gerhard Méndez-Lucio, Oscar Bender, Andreas |
description | Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR. |
doi_str_mv | 10.1016/j.compbiomed.2015.11.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762360126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048251500373X</els_id><sourcerecordid>1762360126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</originalsourceid><addsrcrecordid>eNqNkt9r1TAUx4Mo7jr9F6Tgiy_tTpImTXxQ6nQqDISrom-hTU9n7nqbLmkn--9NuRuDPe0hBJLP-fE930NIRqGgQOXJrrB-P7XO77ErGFBRUFoAiCdkQ1WlcxC8fEo2ABTyUjFxRF7EuAOAEjg8J0dMSq5oqTfkQ739XW_fZXU24vzPh8usmabgG_s3633IpoCds7MbL7K6u8YQMfsUlotsi0169WN8SZ71zRDx1e19TH6dff55-jU___7l22l9nlsh5JxraKVoaS-wo4rpDrs2tdu3ulXa9rzSMrVTdV1lmU7HSiZAKsZKVTVNL3p-TN4e8qbmrhaMs9m7aHEYmhH9Eg2tJOMSKJOPQUHpSpQ8oW8eoDu_hDEJSZTQadS0UolSB8oGH2PA3kzB7ZtwYyiY1Q-zM_d-mNUPQ6lJAlPo69sCS7v-3QXeGZCAjwcA0_CuHQYTrcPRprEHtLPpvHtMlfcPktjBjc42wyXeYLzXZCIzYH6se7GuBRUAvOJ_-H9437Lk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759016178</pqid></control><display><type>article</type><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</creator><creatorcontrib>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</creatorcontrib><description>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2015.11.005</identifier><identifier>PMID: 26638149</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adverse Drug Reactions ; Animals ; Ataxia ; Cocaine ; Databases, Factual ; Drug Discovery - methods ; Drug Interactions ; Drug-Related Side Effects and Adverse Reactions ; Drugs ; Gene expression ; Graph augmentation ; Headaches ; Human Drug Network ; Humans ; Hypotheses ; Information Services ; Internal Medicine ; Multi-label classification ; Network approach ; Ontology ; Other ; Pharmaceutical industry ; Proteins ; R&D ; Random Walk with Restarts ; Research & development ; Side effects</subject><ispartof>Computers in biology and medicine, 2016-01, Vol.68, p.101-108</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</citedby><cites>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</cites><orcidid>0000-0002-2979-9325 ; 0000-0003-0345-1168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1759016178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26638149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmani, Hossein</creatorcontrib><creatorcontrib>Weiss, Gerhard</creatorcontrib><creatorcontrib>Méndez-Lucio, Oscar</creatorcontrib><creatorcontrib>Bender, Andreas</creatorcontrib><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</description><subject>Adverse Drug Reactions</subject><subject>Animals</subject><subject>Ataxia</subject><subject>Cocaine</subject><subject>Databases, Factual</subject><subject>Drug Discovery - methods</subject><subject>Drug Interactions</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Drugs</subject><subject>Gene expression</subject><subject>Graph augmentation</subject><subject>Headaches</subject><subject>Human Drug Network</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Information Services</subject><subject>Internal Medicine</subject><subject>Multi-label classification</subject><subject>Network approach</subject><subject>Ontology</subject><subject>Other</subject><subject>Pharmaceutical industry</subject><subject>Proteins</subject><subject>R&D</subject><subject>Random Walk with Restarts</subject><subject>Research & development</subject><subject>Side effects</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9r1TAUx4Mo7jr9F6Tgiy_tTpImTXxQ6nQqDISrom-hTU9n7nqbLmkn--9NuRuDPe0hBJLP-fE930NIRqGgQOXJrrB-P7XO77ErGFBRUFoAiCdkQ1WlcxC8fEo2ABTyUjFxRF7EuAOAEjg8J0dMSq5oqTfkQ739XW_fZXU24vzPh8usmabgG_s3633IpoCds7MbL7K6u8YQMfsUlotsi0169WN8SZ71zRDx1e19TH6dff55-jU___7l22l9nlsh5JxraKVoaS-wo4rpDrs2tdu3ulXa9rzSMrVTdV1lmU7HSiZAKsZKVTVNL3p-TN4e8qbmrhaMs9m7aHEYmhH9Eg2tJOMSKJOPQUHpSpQ8oW8eoDu_hDEJSZTQadS0UolSB8oGH2PA3kzB7ZtwYyiY1Q-zM_d-mNUPQ6lJAlPo69sCS7v-3QXeGZCAjwcA0_CuHQYTrcPRprEHtLPpvHtMlfcPktjBjc42wyXeYLzXZCIzYH6se7GuBRUAvOJ_-H9437Lk</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rahmani, Hossein</creator><creator>Weiss, Gerhard</creator><creator>Méndez-Lucio, Oscar</creator><creator>Bender, Andreas</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><orcidid>https://orcid.org/0000-0002-2979-9325</orcidid><orcidid>https://orcid.org/0000-0003-0345-1168</orcidid></search><sort><creationdate>20160101</creationdate><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><author>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adverse Drug Reactions</topic><topic>Animals</topic><topic>Ataxia</topic><topic>Cocaine</topic><topic>Databases, Factual</topic><topic>Drug Discovery - methods</topic><topic>Drug Interactions</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Drugs</topic><topic>Gene expression</topic><topic>Graph augmentation</topic><topic>Headaches</topic><topic>Human Drug Network</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Information Services</topic><topic>Internal Medicine</topic><topic>Multi-label classification</topic><topic>Network approach</topic><topic>Ontology</topic><topic>Other</topic><topic>Pharmaceutical industry</topic><topic>Proteins</topic><topic>R&D</topic><topic>Random Walk with Restarts</topic><topic>Research & development</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmani, Hossein</creatorcontrib><creatorcontrib>Weiss, Gerhard</creatorcontrib><creatorcontrib>Méndez-Lucio, Oscar</creatorcontrib><creatorcontrib>Bender, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmani, Hossein</au><au>Weiss, Gerhard</au><au>Méndez-Lucio, Oscar</au><au>Bender, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARWAR: A network approach for predicting Adverse Drug Reactions</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>68</volume><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26638149</pmid><doi>10.1016/j.compbiomed.2015.11.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2979-9325</orcidid><orcidid>https://orcid.org/0000-0003-0345-1168</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2016-01, Vol.68, p.101-108 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762360126 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Adverse Drug Reactions Animals Ataxia Cocaine Databases, Factual Drug Discovery - methods Drug Interactions Drug-Related Side Effects and Adverse Reactions Drugs Gene expression Graph augmentation Headaches Human Drug Network Humans Hypotheses Information Services Internal Medicine Multi-label classification Network approach Ontology Other Pharmaceutical industry Proteins R&D Random Walk with Restarts Research & development Side effects |
title | ARWAR: A network approach for predicting Adverse Drug Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARWAR:%20A%20network%20approach%20for%20predicting%20Adverse%20Drug%20Reactions&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Rahmani,%20Hossein&rft.date=2016-01-01&rft.volume=68&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2015.11.005&rft_dat=%3Cproquest_cross%3E1762360126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759016178&rft_id=info:pmid/26638149&rft_els_id=S001048251500373X&rfr_iscdi=true |