ARWAR: A network approach for predicting Adverse Drug Reactions

Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships amo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2016-01, Vol.68, p.101-108
Hauptverfasser: Rahmani, Hossein, Weiss, Gerhard, Méndez-Lucio, Oscar, Bender, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue
container_start_page 101
container_title Computers in biology and medicine
container_volume 68
creator Rahmani, Hossein
Weiss, Gerhard
Méndez-Lucio, Oscar
Bender, Andreas
description Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.
doi_str_mv 10.1016/j.compbiomed.2015.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762360126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048251500373X</els_id><sourcerecordid>1762360126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</originalsourceid><addsrcrecordid>eNqNkt9r1TAUx4Mo7jr9F6Tgiy_tTpImTXxQ6nQqDISrom-hTU9n7nqbLmkn--9NuRuDPe0hBJLP-fE930NIRqGgQOXJrrB-P7XO77ErGFBRUFoAiCdkQ1WlcxC8fEo2ABTyUjFxRF7EuAOAEjg8J0dMSq5oqTfkQ739XW_fZXU24vzPh8usmabgG_s3633IpoCds7MbL7K6u8YQMfsUlotsi0169WN8SZ71zRDx1e19TH6dff55-jU___7l22l9nlsh5JxraKVoaS-wo4rpDrs2tdu3ulXa9rzSMrVTdV1lmU7HSiZAKsZKVTVNL3p-TN4e8qbmrhaMs9m7aHEYmhH9Eg2tJOMSKJOPQUHpSpQ8oW8eoDu_hDEJSZTQadS0UolSB8oGH2PA3kzB7ZtwYyiY1Q-zM_d-mNUPQ6lJAlPo69sCS7v-3QXeGZCAjwcA0_CuHQYTrcPRprEHtLPpvHtMlfcPktjBjc42wyXeYLzXZCIzYH6se7GuBRUAvOJ_-H9437Lk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759016178</pqid></control><display><type>article</type><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</creator><creatorcontrib>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</creatorcontrib><description>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2015.11.005</identifier><identifier>PMID: 26638149</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adverse Drug Reactions ; Animals ; Ataxia ; Cocaine ; Databases, Factual ; Drug Discovery - methods ; Drug Interactions ; Drug-Related Side Effects and Adverse Reactions ; Drugs ; Gene expression ; Graph augmentation ; Headaches ; Human Drug Network ; Humans ; Hypotheses ; Information Services ; Internal Medicine ; Multi-label classification ; Network approach ; Ontology ; Other ; Pharmaceutical industry ; Proteins ; R&amp;D ; Random Walk with Restarts ; Research &amp; development ; Side effects</subject><ispartof>Computers in biology and medicine, 2016-01, Vol.68, p.101-108</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</citedby><cites>FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</cites><orcidid>0000-0002-2979-9325 ; 0000-0003-0345-1168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1759016178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26638149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahmani, Hossein</creatorcontrib><creatorcontrib>Weiss, Gerhard</creatorcontrib><creatorcontrib>Méndez-Lucio, Oscar</creatorcontrib><creatorcontrib>Bender, Andreas</creatorcontrib><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</description><subject>Adverse Drug Reactions</subject><subject>Animals</subject><subject>Ataxia</subject><subject>Cocaine</subject><subject>Databases, Factual</subject><subject>Drug Discovery - methods</subject><subject>Drug Interactions</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Drugs</subject><subject>Gene expression</subject><subject>Graph augmentation</subject><subject>Headaches</subject><subject>Human Drug Network</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Information Services</subject><subject>Internal Medicine</subject><subject>Multi-label classification</subject><subject>Network approach</subject><subject>Ontology</subject><subject>Other</subject><subject>Pharmaceutical industry</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Random Walk with Restarts</subject><subject>Research &amp; development</subject><subject>Side effects</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkt9r1TAUx4Mo7jr9F6Tgiy_tTpImTXxQ6nQqDISrom-hTU9n7nqbLmkn--9NuRuDPe0hBJLP-fE930NIRqGgQOXJrrB-P7XO77ErGFBRUFoAiCdkQ1WlcxC8fEo2ABTyUjFxRF7EuAOAEjg8J0dMSq5oqTfkQ739XW_fZXU24vzPh8usmabgG_s3633IpoCds7MbL7K6u8YQMfsUlotsi0169WN8SZ71zRDx1e19TH6dff55-jU___7l22l9nlsh5JxraKVoaS-wo4rpDrs2tdu3ulXa9rzSMrVTdV1lmU7HSiZAKsZKVTVNL3p-TN4e8qbmrhaMs9m7aHEYmhH9Eg2tJOMSKJOPQUHpSpQ8oW8eoDu_hDEJSZTQadS0UolSB8oGH2PA3kzB7ZtwYyiY1Q-zM_d-mNUPQ6lJAlPo69sCS7v-3QXeGZCAjwcA0_CuHQYTrcPRprEHtLPpvHtMlfcPktjBjc42wyXeYLzXZCIzYH6se7GuBRUAvOJ_-H9437Lk</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rahmani, Hossein</creator><creator>Weiss, Gerhard</creator><creator>Méndez-Lucio, Oscar</creator><creator>Bender, Andreas</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><orcidid>https://orcid.org/0000-0002-2979-9325</orcidid><orcidid>https://orcid.org/0000-0003-0345-1168</orcidid></search><sort><creationdate>20160101</creationdate><title>ARWAR: A network approach for predicting Adverse Drug Reactions</title><author>Rahmani, Hossein ; Weiss, Gerhard ; Méndez-Lucio, Oscar ; Bender, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-90b65b1f5ed1829dedb005fb9b89cf37968147dd7c297c2c62506822487aaf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adverse Drug Reactions</topic><topic>Animals</topic><topic>Ataxia</topic><topic>Cocaine</topic><topic>Databases, Factual</topic><topic>Drug Discovery - methods</topic><topic>Drug Interactions</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Drugs</topic><topic>Gene expression</topic><topic>Graph augmentation</topic><topic>Headaches</topic><topic>Human Drug Network</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Information Services</topic><topic>Internal Medicine</topic><topic>Multi-label classification</topic><topic>Network approach</topic><topic>Ontology</topic><topic>Other</topic><topic>Pharmaceutical industry</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Random Walk with Restarts</topic><topic>Research &amp; development</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahmani, Hossein</creatorcontrib><creatorcontrib>Weiss, Gerhard</creatorcontrib><creatorcontrib>Méndez-Lucio, Oscar</creatorcontrib><creatorcontrib>Bender, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahmani, Hossein</au><au>Weiss, Gerhard</au><au>Méndez-Lucio, Oscar</au><au>Bender, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARWAR: A network approach for predicting Adverse Drug Reactions</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>68</volume><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Predicting novel drug side-effects, or Adverse Drug Reactions (ADRs), plays an important role in the drug discovery process. Existing methods consider mainly the chemical and biological characteristics of each drug individually, thereby neglecting information hidden in the relationships among drugs. Complementary to the existing individual methods, in this paper, we propose a novel network approach for ADR prediction that is called Augmented Random-WAlk with Restarts (ARWAR). ARWAR, first, applies an existing method to build a network of highly related drugs. Then, it augments the original drug network by adding new nodes and new edges to the network and finally, it applies Random Walks with Restarts to predict novel ADRs. Empirical results show that the ARWAR method presented here outperforms the existing network approach by 20% with respect to average Fmeasure. Furthermore, ARWAR is capable of generating novel hypotheses about drugs with respect to novel and biologically meaningful ADR.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26638149</pmid><doi>10.1016/j.compbiomed.2015.11.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2979-9325</orcidid><orcidid>https://orcid.org/0000-0003-0345-1168</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2016-01, Vol.68, p.101-108
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1762360126
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Adverse Drug Reactions
Animals
Ataxia
Cocaine
Databases, Factual
Drug Discovery - methods
Drug Interactions
Drug-Related Side Effects and Adverse Reactions
Drugs
Gene expression
Graph augmentation
Headaches
Human Drug Network
Humans
Hypotheses
Information Services
Internal Medicine
Multi-label classification
Network approach
Ontology
Other
Pharmaceutical industry
Proteins
R&D
Random Walk with Restarts
Research & development
Side effects
title ARWAR: A network approach for predicting Adverse Drug Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARWAR:%20A%20network%20approach%20for%20predicting%20Adverse%20Drug%20Reactions&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Rahmani,%20Hossein&rft.date=2016-01-01&rft.volume=68&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2015.11.005&rft_dat=%3Cproquest_cross%3E1762360126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759016178&rft_id=info:pmid/26638149&rft_els_id=S001048251500373X&rfr_iscdi=true