Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator
► Valorisation of biodiesel industry by-products for PHA production. ► Replacement of commercial carbon sources and nutrient supplements. ► Replacement of precursors for co-polymer production. ► Influence of salt impurities concentration on PHA production. ► Analysis of thermophysical properties of...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2013-02, Vol.130, p.16-22 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 16 |
container_title | Bioresource technology |
container_volume | 130 |
creator | García, I.L. López, J.A. Dorado, M.P. Kopsahelis, N. Alexandri, M. Papanikolaou, S. Villar, M.A. Koutinas, A.A. |
description | ► Valorisation of biodiesel industry by-products for PHA production. ► Replacement of commercial carbon sources and nutrient supplements. ► Replacement of precursors for co-polymer production. ► Influence of salt impurities concentration on PHA production. ► Analysis of thermophysical properties of the produced PHAs.
Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8–8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K2SO4, the inhibitory effect was observed only at concentrations higher than 20g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance (13C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery. |
doi_str_mv | 10.1016/j.biortech.2012.11.088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762144956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241201783X</els_id><sourcerecordid>1520375844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-b4955deb8f301e03864b9b79303095f4d74903a6d8990064250ec127708cd9f43</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEokPhFSpvkMoig_8S2zvQqPxIldjA2nLsG42HJB5sZ0RehyfF0UzLsqwsXX_nnKt7quqG4C3BpH1_2HY-xAx2v6WY0C0hWyzls2pDpGA1VaJ9Xm2wanEtG8qvqlcpHTDGjAj6srqijEpMJNlUf-5OZphN9mFCoUfdUh9jcLPNCfUxjCjvAZUk5yHBgPzk5pTjgkz5hjjClM_SHsClHOxP1IeIjmFYblm9X1wMv5duzks0GWob6sdhSYV1-A5d8laXbkG7-Ri9OfmSgyawJof4unrRmyHBm8t7Xf34dPd996W-__b56-7jfW0bIXPdcdU0DjrZM0wAM9nyTnVCMcywanruBFeYmdZJpTBuOW0wWEKFwNI61XN2Xd2efctGv2ZIWY8-WRgGM0GYkyaipYSXlPZptKGYiUby_3ClUnHBlFxd2zNqY0gpQq_LLUYTF02wXlvXB_3Qul5b14To0noR3lwy5m4E9yh7qLkAby-ASdYMfTST9ekfJwgnjKrCfThzUO588hB1sh4mC85HsFm74J_a5S-C69Dn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289473986</pqid></control><display><type>article</type><title>Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>García, I.L. ; López, J.A. ; Dorado, M.P. ; Kopsahelis, N. ; Alexandri, M. ; Papanikolaou, S. ; Villar, M.A. ; Koutinas, A.A.</creator><creatorcontrib>García, I.L. ; López, J.A. ; Dorado, M.P. ; Kopsahelis, N. ; Alexandri, M. ; Papanikolaou, S. ; Villar, M.A. ; Koutinas, A.A.</creatorcontrib><description>► Valorisation of biodiesel industry by-products for PHA production. ► Replacement of commercial carbon sources and nutrient supplements. ► Replacement of precursors for co-polymer production. ► Influence of salt impurities concentration on PHA production. ► Analysis of thermophysical properties of the produced PHAs.
Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8–8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K2SO4, the inhibitory effect was observed only at concentrations higher than 20g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance (13C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2012.11.088</identifier><identifier>PMID: 23280181</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bacteria ; Bioconversions. Hemisynthesis ; Biodiesel ; Biofuel production ; Biofuels ; Biological and medical sciences ; Biotechnology ; Brassica rapa ; Byproducts ; Crude glycerol ; Cupriavidus necator ; Cupriavidus necator - growth & development ; Cupriavidus necator - metabolism ; Differential scanning calorimetry ; Energy ; Fermentation ; Flasks ; Fundamental and applied biological sciences. Psychology ; Glycerol ; Industrial applications and implications. Economical aspects ; Industrial Waste ; Methods. Procedures. Technologies ; Microbial bioconversion ; Microbial engineering. Fermentation and microbial culture technology ; Nuclear magnetic resonance ; Polyesters - chemistry ; Polyesters - metabolism ; Polyhydroxyalkanoates (PHA) ; Polyhydroxyalkanoates - biosynthesis ; Rapeseed meal hydrolysate ; Sustainability</subject><ispartof>Bioresource technology, 2013-02, Vol.130, p.16-22</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-b4955deb8f301e03864b9b79303095f4d74903a6d8990064250ec127708cd9f43</citedby><cites>FETCH-LOGICAL-c578t-b4955deb8f301e03864b9b79303095f4d74903a6d8990064250ec127708cd9f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S096085241201783X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141329$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23280181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García, I.L.</creatorcontrib><creatorcontrib>López, J.A.</creatorcontrib><creatorcontrib>Dorado, M.P.</creatorcontrib><creatorcontrib>Kopsahelis, N.</creatorcontrib><creatorcontrib>Alexandri, M.</creatorcontrib><creatorcontrib>Papanikolaou, S.</creatorcontrib><creatorcontrib>Villar, M.A.</creatorcontrib><creatorcontrib>Koutinas, A.A.</creatorcontrib><title>Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Valorisation of biodiesel industry by-products for PHA production. ► Replacement of commercial carbon sources and nutrient supplements. ► Replacement of precursors for co-polymer production. ► Influence of salt impurities concentration on PHA production. ► Analysis of thermophysical properties of the produced PHAs.
Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8–8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K2SO4, the inhibitory effect was observed only at concentrations higher than 20g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance (13C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery.</description><subject>Bacteria</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biodiesel</subject><subject>Biofuel production</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Brassica rapa</subject><subject>Byproducts</subject><subject>Crude glycerol</subject><subject>Cupriavidus necator</subject><subject>Cupriavidus necator - growth & development</subject><subject>Cupriavidus necator - metabolism</subject><subject>Differential scanning calorimetry</subject><subject>Energy</subject><subject>Fermentation</subject><subject>Flasks</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Industrial Waste</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial bioconversion</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Nuclear magnetic resonance</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - metabolism</subject><subject>Polyhydroxyalkanoates (PHA)</subject><subject>Polyhydroxyalkanoates - biosynthesis</subject><subject>Rapeseed meal hydrolysate</subject><subject>Sustainability</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEokPhFSpvkMoig_8S2zvQqPxIldjA2nLsG42HJB5sZ0RehyfF0UzLsqwsXX_nnKt7quqG4C3BpH1_2HY-xAx2v6WY0C0hWyzls2pDpGA1VaJ9Xm2wanEtG8qvqlcpHTDGjAj6srqijEpMJNlUf-5OZphN9mFCoUfdUh9jcLPNCfUxjCjvAZUk5yHBgPzk5pTjgkz5hjjClM_SHsClHOxP1IeIjmFYblm9X1wMv5duzks0GWob6sdhSYV1-A5d8laXbkG7-Ri9OfmSgyawJof4unrRmyHBm8t7Xf34dPd996W-__b56-7jfW0bIXPdcdU0DjrZM0wAM9nyTnVCMcywanruBFeYmdZJpTBuOW0wWEKFwNI61XN2Xd2efctGv2ZIWY8-WRgGM0GYkyaipYSXlPZptKGYiUby_3ClUnHBlFxd2zNqY0gpQq_LLUYTF02wXlvXB_3Qul5b14To0noR3lwy5m4E9yh7qLkAby-ASdYMfTST9ekfJwgnjKrCfThzUO588hB1sh4mC85HsFm74J_a5S-C69Dn</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>García, I.L.</creator><creator>López, J.A.</creator><creator>Dorado, M.P.</creator><creator>Kopsahelis, N.</creator><creator>Alexandri, M.</creator><creator>Papanikolaou, S.</creator><creator>Villar, M.A.</creator><creator>Koutinas, A.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator</title><author>García, I.L. ; López, J.A. ; Dorado, M.P. ; Kopsahelis, N. ; Alexandri, M. ; Papanikolaou, S. ; Villar, M.A. ; Koutinas, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-b4955deb8f301e03864b9b79303095f4d74903a6d8990064250ec127708cd9f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biodiesel</topic><topic>Biofuel production</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Brassica rapa</topic><topic>Byproducts</topic><topic>Crude glycerol</topic><topic>Cupriavidus necator</topic><topic>Cupriavidus necator - growth & development</topic><topic>Cupriavidus necator - metabolism</topic><topic>Differential scanning calorimetry</topic><topic>Energy</topic><topic>Fermentation</topic><topic>Flasks</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Industrial Waste</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial bioconversion</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Nuclear magnetic resonance</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - metabolism</topic><topic>Polyhydroxyalkanoates (PHA)</topic><topic>Polyhydroxyalkanoates - biosynthesis</topic><topic>Rapeseed meal hydrolysate</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, I.L.</creatorcontrib><creatorcontrib>López, J.A.</creatorcontrib><creatorcontrib>Dorado, M.P.</creatorcontrib><creatorcontrib>Kopsahelis, N.</creatorcontrib><creatorcontrib>Alexandri, M.</creatorcontrib><creatorcontrib>Papanikolaou, S.</creatorcontrib><creatorcontrib>Villar, M.A.</creatorcontrib><creatorcontrib>Koutinas, A.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, I.L.</au><au>López, J.A.</au><au>Dorado, M.P.</au><au>Kopsahelis, N.</au><au>Alexandri, M.</au><au>Papanikolaou, S.</au><au>Villar, M.A.</au><au>Koutinas, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-02-01</date><risdate>2013</risdate><volume>130</volume><spage>16</spage><epage>22</epage><pages>16-22</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Valorisation of biodiesel industry by-products for PHA production. ► Replacement of commercial carbon sources and nutrient supplements. ► Replacement of precursors for co-polymer production. ► Influence of salt impurities concentration on PHA production. ► Analysis of thermophysical properties of the produced PHAs.
Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8–8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K2SO4, the inhibitory effect was observed only at concentrations higher than 20g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance (13C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23280181</pmid><doi>10.1016/j.biortech.2012.11.088</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2013-02, Vol.130, p.16-22 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762144956 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bacteria Bioconversions. Hemisynthesis Biodiesel Biofuel production Biofuels Biological and medical sciences Biotechnology Brassica rapa Byproducts Crude glycerol Cupriavidus necator Cupriavidus necator - growth & development Cupriavidus necator - metabolism Differential scanning calorimetry Energy Fermentation Flasks Fundamental and applied biological sciences. Psychology Glycerol Industrial applications and implications. Economical aspects Industrial Waste Methods. Procedures. Technologies Microbial bioconversion Microbial engineering. Fermentation and microbial culture technology Nuclear magnetic resonance Polyesters - chemistry Polyesters - metabolism Polyhydroxyalkanoates (PHA) Polyhydroxyalkanoates - biosynthesis Rapeseed meal hydrolysate Sustainability |
title | Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20by-products%20from%20the%20biodiesel%20industry%20as%20fermentation%20feedstock%20for%20poly(3-hydroxybutyrate-co-3-hydroxyvalerate)%20production%20by%20Cupriavidus%20necator&rft.jtitle=Bioresource%20technology&rft.au=Garc%C3%ADa,%20I.L.&rft.date=2013-02-01&rft.volume=130&rft.spage=16&rft.epage=22&rft.pages=16-22&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2012.11.088&rft_dat=%3Cproquest_cross%3E1520375844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289473986&rft_id=info:pmid/23280181&rft_els_id=S096085241201783X&rfr_iscdi=true |