A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data
ABSTRACT We integrate systems of measurement and modeling to improve estimation of uncertainties in above‐ground biomass (AGB) derived from remote sensing. The outcome provides a unified starting point for the climate‐change carbon community to assess uncertainty and sensitivity data and methodologi...
Gespeichert in:
Veröffentlicht in: | Systems engineering 2014-09, Vol.17 (3), p.361-373 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 3 |
container_start_page | 361 |
container_title | Systems engineering |
container_volume | 17 |
creator | Weisbin, Charles R. Lincoln, William Saatchi, Sassan |
description | ABSTRACT
We integrate systems of measurement and modeling to improve estimation of uncertainties in above‐ground biomass (AGB) derived from remote sensing. The outcome provides a unified starting point for the climate‐change carbon community to assess uncertainty and sensitivity data and methodologies, and ultimately supports decision‐making about which missions and instruments to develop for a desired cost/benefit ratio. Initial results include fusion of remote‐sensing techniques (e.g., radar and lidar), uncertainties associated with measurement and modeling, and the impact of potential uncertainty correlations across aggregated unit areas. Biomass uncertainty estimates are presented at the single‐hectare level for the forestlands of California. Using a forest biomass map of California, we calculate changes in variance (e.g., 2 orders of magnitude) as a function of uncertainty correlation assumptions, with correlations extending to spatial scales up to 100 km. Using a variogram formalism to derive the correlation shape and magnitude, we show that the estimated variance for California above‐ground biomass is between 1% and 2% (1 standard deviation) for our current best estimate of the correlation range at 5–10 km—i.e., we bound the standard deviation by a factor of 2. This contrasts with 0.025% (1 standard deviation) if one does not include the correlation term. |
doi_str_mv | 10.1002/sys.21275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762144787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559669072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5105-b67b15fbc317943d04e71116947afd7c8a7946018d4187166ae705c32860afb63</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJUrLgW9giUt7SOtx_C_HdLtdQFUrkRbEyXISp6Rs7MX2tuTb43SBQyXEaUaj33ujmZdlbwGfAMbkNEzhhAAR7EW2D4zgnEsmX6YelzIHQuFV9jqEe4wBA-D97LFC9RSiGQNa2rvBGuMHe4eqzcY73X5D0aFliMOo4zy-ta3xUQ82TmiwqGrcg8lX3m1th84GN-oQ0FG1OjtG58nnwXSo925En8zooslrY8Pscq6jPsz2er0O5s3vepDdXixvFu_zy-vVh0V1mbcMMMsbLhpgfdMWIEpadJgaAQC8pEL3nWilTmOOQXYUpADOtRGYtQWRHOu-4cVBdrTzTff82JoQ1TiE1qzX2hq3DQoEJ0CpkOL_KGMl5yUWJKHvnqH3buttOmSmCuCkZPPu4x3VeheCN73a-PRJPynAak5LpbTUU1qJPd2xj8PaTP8GVf21_qPId4ohxffzr0L774qLIpFfrlaKfr6oP94spKLFL_w0o1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553162956</pqid></control><display><type>article</type><title>A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data</title><source>Access via Wiley Online Library</source><creator>Weisbin, Charles R. ; Lincoln, William ; Saatchi, Sassan</creator><creatorcontrib>Weisbin, Charles R. ; Lincoln, William ; Saatchi, Sassan</creatorcontrib><description>ABSTRACT
We integrate systems of measurement and modeling to improve estimation of uncertainties in above‐ground biomass (AGB) derived from remote sensing. The outcome provides a unified starting point for the climate‐change carbon community to assess uncertainty and sensitivity data and methodologies, and ultimately supports decision‐making about which missions and instruments to develop for a desired cost/benefit ratio. Initial results include fusion of remote‐sensing techniques (e.g., radar and lidar), uncertainties associated with measurement and modeling, and the impact of potential uncertainty correlations across aggregated unit areas. Biomass uncertainty estimates are presented at the single‐hectare level for the forestlands of California. Using a forest biomass map of California, we calculate changes in variance (e.g., 2 orders of magnitude) as a function of uncertainty correlation assumptions, with correlations extending to spatial scales up to 100 km. Using a variogram formalism to derive the correlation shape and magnitude, we show that the estimated variance for California above‐ground biomass is between 1% and 2% (1 standard deviation) for our current best estimate of the correlation range at 5–10 km—i.e., we bound the standard deviation by a factor of 2. This contrasts with 0.025% (1 standard deviation) if one does not include the correlation term.</description><identifier>ISSN: 1098-1241</identifier><identifier>EISSN: 1520-6858</identifier><identifier>DOI: 10.1002/sys.21275</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>above-ground biomass (AGB) ; Biomass ; carbon ; carbon cycle ; carbon measurement ; carbon monitoring ; Correlation ; correlation of uncertainties ; Estimates ; forests ; Mathematical models ; Remote sensing ; risk reduction ; Standard deviation ; Systems engineering ; Uncertainty ; Variance</subject><ispartof>Systems engineering, 2014-09, Vol.17 (3), p.361-373</ispartof><rights>2013 Wiley Periodicals, Inc.</rights><rights>Copyright © 2014 2014 Wiley Periodicals, Inc., a Wiley Company</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5105-b67b15fbc317943d04e71116947afd7c8a7946018d4187166ae705c32860afb63</citedby><cites>FETCH-LOGICAL-c5105-b67b15fbc317943d04e71116947afd7c8a7946018d4187166ae705c32860afb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsys.21275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsys.21275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids></links><search><creatorcontrib>Weisbin, Charles R.</creatorcontrib><creatorcontrib>Lincoln, William</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><title>A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data</title><title>Systems engineering</title><addtitle>Syst. Engin</addtitle><description>ABSTRACT
We integrate systems of measurement and modeling to improve estimation of uncertainties in above‐ground biomass (AGB) derived from remote sensing. The outcome provides a unified starting point for the climate‐change carbon community to assess uncertainty and sensitivity data and methodologies, and ultimately supports decision‐making about which missions and instruments to develop for a desired cost/benefit ratio. Initial results include fusion of remote‐sensing techniques (e.g., radar and lidar), uncertainties associated with measurement and modeling, and the impact of potential uncertainty correlations across aggregated unit areas. Biomass uncertainty estimates are presented at the single‐hectare level for the forestlands of California. Using a forest biomass map of California, we calculate changes in variance (e.g., 2 orders of magnitude) as a function of uncertainty correlation assumptions, with correlations extending to spatial scales up to 100 km. Using a variogram formalism to derive the correlation shape and magnitude, we show that the estimated variance for California above‐ground biomass is between 1% and 2% (1 standard deviation) for our current best estimate of the correlation range at 5–10 km—i.e., we bound the standard deviation by a factor of 2. This contrasts with 0.025% (1 standard deviation) if one does not include the correlation term.</description><subject>above-ground biomass (AGB)</subject><subject>Biomass</subject><subject>carbon</subject><subject>carbon cycle</subject><subject>carbon measurement</subject><subject>carbon monitoring</subject><subject>Correlation</subject><subject>correlation of uncertainties</subject><subject>Estimates</subject><subject>forests</subject><subject>Mathematical models</subject><subject>Remote sensing</subject><subject>risk reduction</subject><subject>Standard deviation</subject><subject>Systems engineering</subject><subject>Uncertainty</subject><subject>Variance</subject><issn>1098-1241</issn><issn>1520-6858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxSNEJUrLgW9giUt7SOtx_C_HdLtdQFUrkRbEyXISp6Rs7MX2tuTb43SBQyXEaUaj33ujmZdlbwGfAMbkNEzhhAAR7EW2D4zgnEsmX6YelzIHQuFV9jqEe4wBA-D97LFC9RSiGQNa2rvBGuMHe4eqzcY73X5D0aFliMOo4zy-ta3xUQ82TmiwqGrcg8lX3m1th84GN-oQ0FG1OjtG58nnwXSo925En8zooslrY8Pscq6jPsz2er0O5s3vepDdXixvFu_zy-vVh0V1mbcMMMsbLhpgfdMWIEpadJgaAQC8pEL3nWilTmOOQXYUpADOtRGYtQWRHOu-4cVBdrTzTff82JoQ1TiE1qzX2hq3DQoEJ0CpkOL_KGMl5yUWJKHvnqH3buttOmSmCuCkZPPu4x3VeheCN73a-PRJPynAak5LpbTUU1qJPd2xj8PaTP8GVf21_qPId4ohxffzr0L774qLIpFfrlaKfr6oP94spKLFL_w0o1I</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Weisbin, Charles R.</creator><creator>Lincoln, William</creator><creator>Saatchi, Sassan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data</title><author>Weisbin, Charles R. ; Lincoln, William ; Saatchi, Sassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5105-b67b15fbc317943d04e71116947afd7c8a7946018d4187166ae705c32860afb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>above-ground biomass (AGB)</topic><topic>Biomass</topic><topic>carbon</topic><topic>carbon cycle</topic><topic>carbon measurement</topic><topic>carbon monitoring</topic><topic>Correlation</topic><topic>correlation of uncertainties</topic><topic>Estimates</topic><topic>forests</topic><topic>Mathematical models</topic><topic>Remote sensing</topic><topic>risk reduction</topic><topic>Standard deviation</topic><topic>Systems engineering</topic><topic>Uncertainty</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisbin, Charles R.</creatorcontrib><creatorcontrib>Lincoln, William</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Systems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisbin, Charles R.</au><au>Lincoln, William</au><au>Saatchi, Sassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data</atitle><jtitle>Systems engineering</jtitle><addtitle>Syst. Engin</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>17</volume><issue>3</issue><spage>361</spage><epage>373</epage><pages>361-373</pages><issn>1098-1241</issn><eissn>1520-6858</eissn><abstract>ABSTRACT
We integrate systems of measurement and modeling to improve estimation of uncertainties in above‐ground biomass (AGB) derived from remote sensing. The outcome provides a unified starting point for the climate‐change carbon community to assess uncertainty and sensitivity data and methodologies, and ultimately supports decision‐making about which missions and instruments to develop for a desired cost/benefit ratio. Initial results include fusion of remote‐sensing techniques (e.g., radar and lidar), uncertainties associated with measurement and modeling, and the impact of potential uncertainty correlations across aggregated unit areas. Biomass uncertainty estimates are presented at the single‐hectare level for the forestlands of California. Using a forest biomass map of California, we calculate changes in variance (e.g., 2 orders of magnitude) as a function of uncertainty correlation assumptions, with correlations extending to spatial scales up to 100 km. Using a variogram formalism to derive the correlation shape and magnitude, we show that the estimated variance for California above‐ground biomass is between 1% and 2% (1 standard deviation) for our current best estimate of the correlation range at 5–10 km—i.e., we bound the standard deviation by a factor of 2. This contrasts with 0.025% (1 standard deviation) if one does not include the correlation term.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/sys.21275</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-1241 |
ispartof | Systems engineering, 2014-09, Vol.17 (3), p.361-373 |
issn | 1098-1241 1520-6858 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762144787 |
source | Access via Wiley Online Library |
subjects | above-ground biomass (AGB) Biomass carbon carbon cycle carbon measurement carbon monitoring Correlation correlation of uncertainties Estimates forests Mathematical models Remote sensing risk reduction Standard deviation Systems engineering Uncertainty Variance |
title | A Systems Engineering Approach to Estimating Uncertainty in Above-Ground Biomass (AGB) Derived from Remote-Sensing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems%20Engineering%20Approach%20to%20Estimating%20Uncertainty%20in%20Above-Ground%20Biomass%20(AGB)%20Derived%20from%20Remote-Sensing%20Data&rft.jtitle=Systems%20engineering&rft.au=Weisbin,%20Charles%20R.&rft.date=2014-09-01&rft.volume=17&rft.issue=3&rft.spage=361&rft.epage=373&rft.pages=361-373&rft.issn=1098-1241&rft.eissn=1520-6858&rft_id=info:doi/10.1002/sys.21275&rft_dat=%3Cproquest_cross%3E1559669072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553162956&rft_id=info:pmid/&rfr_iscdi=true |