Free vibrations of spatial Timoshenko arches

This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2014-09, Vol.333 (19), p.4543-4561
Hauptverfasser: Caliò, I., Greco, A., D׳Urso, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4561
container_issue 19
container_start_page 4543
container_title Journal of sound and vibration
container_volume 333
creator Caliò, I.
Greco, A.
D׳Urso, D.
description This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.
doi_str_mv 10.1016/j.jsv.2014.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762144187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X14002843</els_id><sourcerecordid>1567120350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouH78Ad569GDrTJp-BE-yuCoseFnBW0jTKZvabdaku-B_b5b1rPBg5vB7M7zH2A1ChoDlfZ_1YZ9xQJFBFMoTNkOQRVoXZX3KZgCcp6KEj3N2EUIPAFLkYsbuFp4o2dvG68m6MSSuS8I27npIVnbjwprGT5dob9YUrthZp4dA17_zkr0vnlbzl3T59vw6f1ymRuT5lDa8E1CAhBJbXTay5lxL0AU1RWc474yQVXzeom5bynNAU7dQgRYVdK0Ayi_Z7fHu1ruvHYVJbWwwNAx6JLcLCquSoxBYV_-jRVkhh7yAiOIRNd6F4KlTW2832n8rBHUoUfUqlqgOJSqIQhk9D0cPxbh7S14FY2k01FpPZlKts3-4fwBeVXhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567120350</pqid></control><display><type>article</type><title>Free vibrations of spatial Timoshenko arches</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Caliò, I. ; Greco, A. ; D׳Urso, D.</creator><creatorcontrib>Caliò, I. ; Greco, A. ; D׳Urso, D.</creatorcontrib><description>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2014.04.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arches ; Dynamic structural analysis ; Dynamics ; Mathematical analysis ; Mathematical models ; Stiffness matrix ; Timoshenko beams ; Vibration mode</subject><ispartof>Journal of sound and vibration, 2014-09, Vol.333 (19), p.4543-4561</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</citedby><cites>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2014.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Caliò, I.</creatorcontrib><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>D׳Urso, D.</creatorcontrib><title>Free vibrations of spatial Timoshenko arches</title><title>Journal of sound and vibration</title><description>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</description><subject>Arches</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Stiffness matrix</subject><subject>Timoshenko beams</subject><subject>Vibration mode</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouH78Ad569GDrTJp-BE-yuCoseFnBW0jTKZvabdaku-B_b5b1rPBg5vB7M7zH2A1ChoDlfZ_1YZ9xQJFBFMoTNkOQRVoXZX3KZgCcp6KEj3N2EUIPAFLkYsbuFp4o2dvG68m6MSSuS8I27npIVnbjwprGT5dob9YUrthZp4dA17_zkr0vnlbzl3T59vw6f1ymRuT5lDa8E1CAhBJbXTay5lxL0AU1RWc474yQVXzeom5bynNAU7dQgRYVdK0Ayi_Z7fHu1ruvHYVJbWwwNAx6JLcLCquSoxBYV_-jRVkhh7yAiOIRNd6F4KlTW2832n8rBHUoUfUqlqgOJSqIQhk9D0cPxbh7S14FY2k01FpPZlKts3-4fwBeVXhz</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Caliò, I.</creator><creator>Greco, A.</creator><creator>D׳Urso, D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140914</creationdate><title>Free vibrations of spatial Timoshenko arches</title><author>Caliò, I. ; Greco, A. ; D׳Urso, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arches</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Stiffness matrix</topic><topic>Timoshenko beams</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliò, I.</creatorcontrib><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>D׳Urso, D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliò, I.</au><au>Greco, A.</au><au>D׳Urso, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibrations of spatial Timoshenko arches</atitle><jtitle>Journal of sound and vibration</jtitle><date>2014-09-14</date><risdate>2014</risdate><volume>333</volume><issue>19</issue><spage>4543</spage><epage>4561</epage><pages>4543-4561</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2014.04.019</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2014-09, Vol.333 (19), p.4543-4561
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_1762144187
source Elsevier ScienceDirect Journals Complete
subjects Arches
Dynamic structural analysis
Dynamics
Mathematical analysis
Mathematical models
Stiffness matrix
Timoshenko beams
Vibration mode
title Free vibrations of spatial Timoshenko arches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibrations%20of%20spatial%20Timoshenko%20arches&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Cali%C3%B2,%20I.&rft.date=2014-09-14&rft.volume=333&rft.issue=19&rft.spage=4543&rft.epage=4561&rft.pages=4543-4561&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2014.04.019&rft_dat=%3Cproquest_cross%3E1567120350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567120350&rft_id=info:pmid/&rft_els_id=S0022460X14002843&rfr_iscdi=true