Free vibrations of spatial Timoshenko arches
This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2014-09, Vol.333 (19), p.4543-4561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4561 |
---|---|
container_issue | 19 |
container_start_page | 4543 |
container_title | Journal of sound and vibration |
container_volume | 333 |
creator | Caliò, I. Greco, A. D׳Urso, D. |
description | This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation. |
doi_str_mv | 10.1016/j.jsv.2014.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762144187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X14002843</els_id><sourcerecordid>1567120350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouH78Ad569GDrTJp-BE-yuCoseFnBW0jTKZvabdaku-B_b5b1rPBg5vB7M7zH2A1ChoDlfZ_1YZ9xQJFBFMoTNkOQRVoXZX3KZgCcp6KEj3N2EUIPAFLkYsbuFp4o2dvG68m6MSSuS8I27npIVnbjwprGT5dob9YUrthZp4dA17_zkr0vnlbzl3T59vw6f1ymRuT5lDa8E1CAhBJbXTay5lxL0AU1RWc474yQVXzeom5bynNAU7dQgRYVdK0Ayi_Z7fHu1ruvHYVJbWwwNAx6JLcLCquSoxBYV_-jRVkhh7yAiOIRNd6F4KlTW2832n8rBHUoUfUqlqgOJSqIQhk9D0cPxbh7S14FY2k01FpPZlKts3-4fwBeVXhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567120350</pqid></control><display><type>article</type><title>Free vibrations of spatial Timoshenko arches</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Caliò, I. ; Greco, A. ; D׳Urso, D.</creator><creatorcontrib>Caliò, I. ; Greco, A. ; D׳Urso, D.</creatorcontrib><description>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2014.04.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arches ; Dynamic structural analysis ; Dynamics ; Mathematical analysis ; Mathematical models ; Stiffness matrix ; Timoshenko beams ; Vibration mode</subject><ispartof>Journal of sound and vibration, 2014-09, Vol.333 (19), p.4543-4561</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</citedby><cites>FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2014.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Caliò, I.</creatorcontrib><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>D׳Urso, D.</creatorcontrib><title>Free vibrations of spatial Timoshenko arches</title><title>Journal of sound and vibration</title><description>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</description><subject>Arches</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Stiffness matrix</subject><subject>Timoshenko beams</subject><subject>Vibration mode</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouH78Ad569GDrTJp-BE-yuCoseFnBW0jTKZvabdaku-B_b5b1rPBg5vB7M7zH2A1ChoDlfZ_1YZ9xQJFBFMoTNkOQRVoXZX3KZgCcp6KEj3N2EUIPAFLkYsbuFp4o2dvG68m6MSSuS8I27npIVnbjwprGT5dob9YUrthZp4dA17_zkr0vnlbzl3T59vw6f1ymRuT5lDa8E1CAhBJbXTay5lxL0AU1RWc474yQVXzeom5bynNAU7dQgRYVdK0Ayi_Z7fHu1ruvHYVJbWwwNAx6JLcLCquSoxBYV_-jRVkhh7yAiOIRNd6F4KlTW2832n8rBHUoUfUqlqgOJSqIQhk9D0cPxbh7S14FY2k01FpPZlKts3-4fwBeVXhz</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Caliò, I.</creator><creator>Greco, A.</creator><creator>D׳Urso, D.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140914</creationdate><title>Free vibrations of spatial Timoshenko arches</title><author>Caliò, I. ; Greco, A. ; D׳Urso, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-b2f40509061da6b9822a90a5eb5fc22fc497434d1adde3301c8d070a470fd40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arches</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Stiffness matrix</topic><topic>Timoshenko beams</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliò, I.</creatorcontrib><creatorcontrib>Greco, A.</creatorcontrib><creatorcontrib>D׳Urso, D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliò, I.</au><au>Greco, A.</au><au>D׳Urso, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibrations of spatial Timoshenko arches</atitle><jtitle>Journal of sound and vibration</jtitle><date>2014-09-14</date><risdate>2014</risdate><volume>333</volume><issue>19</issue><spage>4543</spage><epage>4561</epage><pages>4543-4561</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2014.04.019</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2014-09, Vol.333 (19), p.4543-4561 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762144187 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Arches Dynamic structural analysis Dynamics Mathematical analysis Mathematical models Stiffness matrix Timoshenko beams Vibration mode |
title | Free vibrations of spatial Timoshenko arches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibrations%20of%20spatial%20Timoshenko%20arches&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Cali%C3%B2,%20I.&rft.date=2014-09-14&rft.volume=333&rft.issue=19&rft.spage=4543&rft.epage=4561&rft.pages=4543-4561&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2014.04.019&rft_dat=%3Cproquest_cross%3E1567120350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567120350&rft_id=info:pmid/&rft_els_id=S0022460X14002843&rfr_iscdi=true |