Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites
The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2013-06, Vol.53 (6), p.1253-1261 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1261 |
---|---|
container_issue | 6 |
container_start_page | 1253 |
container_title | Polymer engineering and science |
container_volume | 53 |
creator | Carvalho, Hudson W.P. Suzana, Ana F. Santilli, Celso V. Pulcinelli, Sandra H. |
description | The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.23364 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762143729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332894419</galeid><sourcerecordid>A332894419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhgdRcK1e-A8GROjCTjef83FZlroKtQoqvQxpJrObmkmmORns_JX-2mY7tRcF8SaHnDzvm5O8WfYeoxOMEFkP2p0QSkv2IltgzuqClJS9zBYIUVLQuq5fZ28ArlFiKW8W2d2PycW9BgOrHGIYVRyDXuXStXlqh17a1JZXxpo45b7LB2-n417H_WTzQ5EqTFZGvSyUL-ZTWsRgHhh_O4Gxk7HLIfjhuWKd997F3gdjrXcm6txJ55XvBw9pB2-zV520oN891qPs16ezn5vPxfm37ZfN6XmhOOKswLrqWlwpRXRLq66pEcFNQxVpMOGK8a6jbWJQU5UUKc05rRHHLe4QT18gCT3KjmffNOTNqCGK3oDS1kqn_QgCVyXBjFak-T_KCWooJYwm9MMz9NqPwaWHCMyasmRlVbJErWZqJ60WVyMYpyEtYHb7CDs5AojTZFg3jOHD_csZV8EDBN2JIZhehklgJA75i5S_eMg_sR8fB5CgpO2CdMrAk4BUDGPGUeLWM_fHWD3921B8P7v461zMCgNR3z4pZPgtyopWXFxebAX6yjb4kpdiS-8BHobPHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496646764</pqid></control><display><type>article</type><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</creator><creatorcontrib>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</creatorcontrib><description>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.23364</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Charring ; Chemical reactions ; Chemical synthesis ; Clay (material) ; Comparative analysis ; Composites ; Composition ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fourier transforms ; Infrared spectroscopy ; Interlayers ; Methods ; Montmorillonite ; Nanocomposites ; Nanoparticles ; Polymer industry, paints, wood ; Polymeric composites ; Polymers ; Polymethyl methacrylates ; Polymethylmethacrylate ; Production processes ; Properties ; SAXS ; Structure ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2013-06, Vol.53 (6), p.1253-1261</ispartof><rights>Copyright © 2012 Society of Plastics Engineers</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</citedby><cites>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.23364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.23364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27411450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Suzana, Ana F.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Charring</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Clay (material)</subject><subject>Comparative analysis</subject><subject>Composites</subject><subject>Composition</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Interlayers</subject><subject>Methods</subject><subject>Montmorillonite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Production processes</subject><subject>Properties</subject><subject>SAXS</subject><subject>Structure</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkV1rFDEUhgdRcK1e-A8GROjCTjef83FZlroKtQoqvQxpJrObmkmmORns_JX-2mY7tRcF8SaHnDzvm5O8WfYeoxOMEFkP2p0QSkv2IltgzuqClJS9zBYIUVLQuq5fZ28ArlFiKW8W2d2PycW9BgOrHGIYVRyDXuXStXlqh17a1JZXxpo45b7LB2-n417H_WTzQ5EqTFZGvSyUL-ZTWsRgHhh_O4Gxk7HLIfjhuWKd997F3gdjrXcm6txJ55XvBw9pB2-zV520oN891qPs16ezn5vPxfm37ZfN6XmhOOKswLrqWlwpRXRLq66pEcFNQxVpMOGK8a6jbWJQU5UUKc05rRHHLe4QT18gCT3KjmffNOTNqCGK3oDS1kqn_QgCVyXBjFak-T_KCWooJYwm9MMz9NqPwaWHCMyasmRlVbJErWZqJ60WVyMYpyEtYHb7CDs5AojTZFg3jOHD_csZV8EDBN2JIZhehklgJA75i5S_eMg_sR8fB5CgpO2CdMrAk4BUDGPGUeLWM_fHWD3921B8P7v461zMCgNR3z4pZPgtyopWXFxebAX6yjb4kpdiS-8BHobPHQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Carvalho, Hudson W.P.</creator><creator>Suzana, Ana F.</creator><creator>Santilli, Celso V.</creator><creator>Pulcinelli, Sandra H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><author>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Charring</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Clay (material)</topic><topic>Comparative analysis</topic><topic>Composites</topic><topic>Composition</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Interlayers</topic><topic>Methods</topic><topic>Montmorillonite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Production processes</topic><topic>Properties</topic><topic>SAXS</topic><topic>Structure</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Suzana, Ana F.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Hudson W.P.</au><au>Suzana, Ana F.</au><au>Santilli, Celso V.</au><au>Pulcinelli, Sandra H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2013-06</date><risdate>2013</risdate><volume>53</volume><issue>6</issue><spage>1253</spage><epage>1261</epage><pages>1253-1261</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.23364</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2013-06, Vol.53 (6), p.1253-1261 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762143729 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Charring Chemical reactions Chemical synthesis Clay (material) Comparative analysis Composites Composition Exact sciences and technology Forms of application and semi-finished materials Fourier transforms Infrared spectroscopy Interlayers Methods Montmorillonite Nanocomposites Nanoparticles Polymer industry, paints, wood Polymeric composites Polymers Polymethyl methacrylates Polymethylmethacrylate Production processes Properties SAXS Structure Technology of polymers |
title | Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structure,%20and%20thermal%20stability%20of%20poly(methyl%20methacrylate)-co-%20poly(3-tri(methoxysilyil)propyl%20methacrylate)/%20montmorillonite%20nanocomposites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Carvalho,%20Hudson%20W.P.&rft.date=2013-06&rft.volume=53&rft.issue=6&rft.spage=1253&rft.epage=1261&rft.pages=1253-1261&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.23364&rft_dat=%3Cgale_proqu%3EA332894419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496646764&rft_id=info:pmid/&rft_galeid=A332894419&rfr_iscdi=true |