Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites

The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2013-06, Vol.53 (6), p.1253-1261
Hauptverfasser: Carvalho, Hudson W.P., Suzana, Ana F., Santilli, Celso V., Pulcinelli, Sandra H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1261
container_issue 6
container_start_page 1253
container_title Polymer engineering and science
container_volume 53
creator Carvalho, Hudson W.P.
Suzana, Ana F.
Santilli, Celso V.
Pulcinelli, Sandra H.
description The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers
doi_str_mv 10.1002/pen.23364
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762143729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332894419</galeid><sourcerecordid>A332894419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhgdRcK1e-A8GROjCTjef83FZlroKtQoqvQxpJrObmkmmORns_JX-2mY7tRcF8SaHnDzvm5O8WfYeoxOMEFkP2p0QSkv2IltgzuqClJS9zBYIUVLQuq5fZ28ArlFiKW8W2d2PycW9BgOrHGIYVRyDXuXStXlqh17a1JZXxpo45b7LB2-n417H_WTzQ5EqTFZGvSyUL-ZTWsRgHhh_O4Gxk7HLIfjhuWKd997F3gdjrXcm6txJ55XvBw9pB2-zV520oN891qPs16ezn5vPxfm37ZfN6XmhOOKswLrqWlwpRXRLq66pEcFNQxVpMOGK8a6jbWJQU5UUKc05rRHHLe4QT18gCT3KjmffNOTNqCGK3oDS1kqn_QgCVyXBjFak-T_KCWooJYwm9MMz9NqPwaWHCMyasmRlVbJErWZqJ60WVyMYpyEtYHb7CDs5AojTZFg3jOHD_csZV8EDBN2JIZhehklgJA75i5S_eMg_sR8fB5CgpO2CdMrAk4BUDGPGUeLWM_fHWD3921B8P7v461zMCgNR3z4pZPgtyopWXFxebAX6yjb4kpdiS-8BHobPHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496646764</pqid></control><display><type>article</type><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</creator><creatorcontrib>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</creatorcontrib><description>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.23364</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Charring ; Chemical reactions ; Chemical synthesis ; Clay (material) ; Comparative analysis ; Composites ; Composition ; Exact sciences and technology ; Forms of application and semi-finished materials ; Fourier transforms ; Infrared spectroscopy ; Interlayers ; Methods ; Montmorillonite ; Nanocomposites ; Nanoparticles ; Polymer industry, paints, wood ; Polymeric composites ; Polymers ; Polymethyl methacrylates ; Polymethylmethacrylate ; Production processes ; Properties ; SAXS ; Structure ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2013-06, Vol.53 (6), p.1253-1261</ispartof><rights>Copyright © 2012 Society of Plastics Engineers</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</citedby><cites>FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.23364$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.23364$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27411450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Suzana, Ana F.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Charring</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Clay (material)</subject><subject>Comparative analysis</subject><subject>Composites</subject><subject>Composition</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Interlayers</subject><subject>Methods</subject><subject>Montmorillonite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer industry, paints, wood</subject><subject>Polymeric composites</subject><subject>Polymers</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Production processes</subject><subject>Properties</subject><subject>SAXS</subject><subject>Structure</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqFkV1rFDEUhgdRcK1e-A8GROjCTjef83FZlroKtQoqvQxpJrObmkmmORns_JX-2mY7tRcF8SaHnDzvm5O8WfYeoxOMEFkP2p0QSkv2IltgzuqClJS9zBYIUVLQuq5fZ28ArlFiKW8W2d2PycW9BgOrHGIYVRyDXuXStXlqh17a1JZXxpo45b7LB2-n417H_WTzQ5EqTFZGvSyUL-ZTWsRgHhh_O4Gxk7HLIfjhuWKd997F3gdjrXcm6txJ55XvBw9pB2-zV520oN891qPs16ezn5vPxfm37ZfN6XmhOOKswLrqWlwpRXRLq66pEcFNQxVpMOGK8a6jbWJQU5UUKc05rRHHLe4QT18gCT3KjmffNOTNqCGK3oDS1kqn_QgCVyXBjFak-T_KCWooJYwm9MMz9NqPwaWHCMyasmRlVbJErWZqJ60WVyMYpyEtYHb7CDs5AojTZFg3jOHD_csZV8EDBN2JIZhehklgJA75i5S_eMg_sR8fB5CgpO2CdMrAk4BUDGPGUeLWM_fHWD3921B8P7v461zMCgNR3z4pZPgtyopWXFxebAX6yjb4kpdiS-8BHobPHQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Carvalho, Hudson W.P.</creator><creator>Suzana, Ana F.</creator><creator>Santilli, Celso V.</creator><creator>Pulcinelli, Sandra H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</title><author>Carvalho, Hudson W.P. ; Suzana, Ana F. ; Santilli, Celso V. ; Pulcinelli, Sandra H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-1e7fd17cc2ed37f98021993c29125c45ff3d1e7097630ce5538051d1f05235a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Charring</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Clay (material)</topic><topic>Comparative analysis</topic><topic>Composites</topic><topic>Composition</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Interlayers</topic><topic>Methods</topic><topic>Montmorillonite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer industry, paints, wood</topic><topic>Polymeric composites</topic><topic>Polymers</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Production processes</topic><topic>Properties</topic><topic>SAXS</topic><topic>Structure</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Suzana, Ana F.</creatorcontrib><creatorcontrib>Santilli, Celso V.</creatorcontrib><creatorcontrib>Pulcinelli, Sandra H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Hudson W.P.</au><au>Suzana, Ana F.</au><au>Santilli, Celso V.</au><au>Pulcinelli, Sandra H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2013-06</date><risdate>2013</risdate><volume>53</volume><issue>6</issue><spage>1253</spage><epage>1261</epage><pages>1253-1261</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.23364</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2013-06, Vol.53 (6), p.1253-1261
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_1762143729
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Charring
Chemical reactions
Chemical synthesis
Clay (material)
Comparative analysis
Composites
Composition
Exact sciences and technology
Forms of application and semi-finished materials
Fourier transforms
Infrared spectroscopy
Interlayers
Methods
Montmorillonite
Nanocomposites
Nanoparticles
Polymer industry, paints, wood
Polymeric composites
Polymers
Polymethyl methacrylates
Polymethylmethacrylate
Production processes
Properties
SAXS
Structure
Technology of polymers
title Synthesis, structure, and thermal stability of poly(methyl methacrylate)-co- poly(3-tri(methoxysilyil)propyl methacrylate)/ montmorillonite nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20structure,%20and%20thermal%20stability%20of%20poly(methyl%20methacrylate)-co-%20poly(3-tri(methoxysilyil)propyl%20methacrylate)/%20montmorillonite%20nanocomposites&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Carvalho,%20Hudson%20W.P.&rft.date=2013-06&rft.volume=53&rft.issue=6&rft.spage=1253&rft.epage=1261&rft.pages=1253-1261&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.23364&rft_dat=%3Cgale_proqu%3EA332894419%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496646764&rft_id=info:pmid/&rft_galeid=A332894419&rfr_iscdi=true