Linear Regression With Nested Errors Using Probability-Linked Data

Summary Probabilistic matching of records is widely used to create linked data sets for use in health science, epidemiological, economic, demographic and sociological research. Clearly, this type of matching can lead to linkage errors, which in turn can lead to bias and increased variability when st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australian & New Zealand journal of statistics 2014-03, Vol.56 (1), p.27-46
Hauptverfasser: Samart, Klairung, Chambers, Ray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Probabilistic matching of records is widely used to create linked data sets for use in health science, epidemiological, economic, demographic and sociological research. Clearly, this type of matching can lead to linkage errors, which in turn can lead to bias and increased variability when standard statistical estimation techniques are used with the linked data. In this paper we develop unbiased regression parameter estimates to be used when fitting a linear model with nested errors to probabilistically linked data. Since estimation of variance components is typically an important objective when fitting such a model, we also develop appropriate modifications to standard methods of variance components estimation in order to account for linkage error. In particular, we focus on three widely used methods of variance components estimation: analysis of variance, maximum likelihood and restricted maximum likelihood. Simulation results show that our estimators perform reasonably well when compared to standard estimation methods that ignore linkage errors.
ISSN:1369-1473
1467-842X
DOI:10.1111/anzs.12052