Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing

As a widely used approach for feature extraction and data reduction, Principal Components Analysis (PCA) suffers from high computational cost, large memory requirement and low efficacy in dealing with large dimensional datasets such as Hyperspectral Imaging (HSI). Consequently, a novel Folded-PCA is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2014-07, Vol.93, p.112-122
Hauptverfasser: Zabalza, Jaime, Ren, Jinchang, Yang, Mingqiang, Zhang, Yi, Wang, Jun, Marshall, Stephen, Han, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!