Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization

A study of the thickness growth rate of anodized porous alumina membranes (PAMs) and its connection to the current density during the anodization process is presented. Several samples of PAMs were prepared in a hydrate solution of 0.3 M oxalic acid, under applied voltages of 40 and 50 V with varying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2014-06, Vol.44 (6), p.701-707
Hauptverfasser: Christoulaki, A., Dellis, S., Spiliopoulos, N., Anastassopoulos, D. L., Vradis, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 6
container_start_page 701
container_title Journal of applied electrochemistry
container_volume 44
creator Christoulaki, A.
Dellis, S.
Spiliopoulos, N.
Anastassopoulos, D. L.
Vradis, A. A.
description A study of the thickness growth rate of anodized porous alumina membranes (PAMs) and its connection to the current density during the anodization process is presented. Several samples of PAMs were prepared in a hydrate solution of 0.3 M oxalic acid, under applied voltages of 40 and 50 V with varying solution temperatures in a purpose-built electrochemical cell. The thickness of the PAMs produced under these conditions was measured using cross section images taken by scanning electron microscopy (SEM). From these measurements, a linear expression between the growth rate of PAMs and the current density during the anodization is deduced, giving an efficiency value of 53 and 65 % for applied voltages 40 and 50 V, respectively. In steady state conditions, i.e., after the stabilization of the anodization current, this linear dependence is very conveniently transformed into linear dependence of thickness versus total anodization time, providing thus a simple method for controlling the thickness of the produced membranes. Finally, from the Arrhenius-type plot of the thickness growth rate versus temperature and the anodization current density vs temperature a mean value of 48.5 kJ mol −1 for the aluminum oxide formation activation energy E a is deduced.
doi_str_mv 10.1007/s10800-014-0680-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762141792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762141792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-cbe505041520507b0e11cae6d965f4ac6f87bc890b61a6853bb82b7958dd622e3</originalsourceid><addsrcrecordid>eNqFUcGOFCEQJUYTx10_wBtHL-0WDNDgzUx012STvWiyN0LT1S4rDSN0H8Yv8LOlHfeqB1Ik9d6revUIecPgHQPoryoDDdABEx0oDZ14RnZM9rzTeq-fkx0AZ5027P4leVXrIwAYrsSO_DrktJQcY0jf6PKA7QX_PWGtNE8UI_rW9Q84B-9iPNFjyePqcaTHXPJaqYvrHJKjM85DcY33_o9KU8RNYPv7tRRMCx0x1bCc6LiWp2Eu5TH8dEvI6ZK8mFys-PpvvSBfP338crjpbu-uPx8-3HZecLF0fkAJEgSTvJV-AGTMO1SjUXISzqtJ94PXBgbFnNJyPwyaD72RehwV57i_IG_Pus3JjxXrYudQPcbYlm-GLOsVZ4L1hv8fKqVRxoASDcrOUF9yrQUneyxhduVkGdgtIHsOyLaA7BaQ3Tj8zKnH7SBY7GNeS2rm_0H6DauplhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559699064</pqid></control><display><type>article</type><title>Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Christoulaki, A. ; Dellis, S. ; Spiliopoulos, N. ; Anastassopoulos, D. L. ; Vradis, A. A.</creator><creatorcontrib>Christoulaki, A. ; Dellis, S. ; Spiliopoulos, N. ; Anastassopoulos, D. L. ; Vradis, A. A.</creatorcontrib><description>A study of the thickness growth rate of anodized porous alumina membranes (PAMs) and its connection to the current density during the anodization process is presented. Several samples of PAMs were prepared in a hydrate solution of 0.3 M oxalic acid, under applied voltages of 40 and 50 V with varying solution temperatures in a purpose-built electrochemical cell. The thickness of the PAMs produced under these conditions was measured using cross section images taken by scanning electron microscopy (SEM). From these measurements, a linear expression between the growth rate of PAMs and the current density during the anodization is deduced, giving an efficiency value of 53 and 65 % for applied voltages 40 and 50 V, respectively. In steady state conditions, i.e., after the stabilization of the anodization current, this linear dependence is very conveniently transformed into linear dependence of thickness versus total anodization time, providing thus a simple method for controlling the thickness of the produced membranes. Finally, from the Arrhenius-type plot of the thickness growth rate versus temperature and the anodization current density vs temperature a mean value of 48.5 kJ mol −1 for the aluminum oxide formation activation energy E a is deduced.</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-014-0680-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum oxide ; Anodizing ; Chemistry ; Chemistry and Materials Science ; Current density ; Electric potential ; Electrochemistry ; Industrial Chemistry/Chemical Engineering ; Membranes ; Physical Chemistry ; Research Article ; Scanning electron microscopy ; Steady state ; Voltage</subject><ispartof>Journal of applied electrochemistry, 2014-06, Vol.44 (6), p.701-707</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-cbe505041520507b0e11cae6d965f4ac6f87bc890b61a6853bb82b7958dd622e3</citedby><cites>FETCH-LOGICAL-c424t-cbe505041520507b0e11cae6d965f4ac6f87bc890b61a6853bb82b7958dd622e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-014-0680-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-014-0680-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Christoulaki, A.</creatorcontrib><creatorcontrib>Dellis, S.</creatorcontrib><creatorcontrib>Spiliopoulos, N.</creatorcontrib><creatorcontrib>Anastassopoulos, D. L.</creatorcontrib><creatorcontrib>Vradis, A. A.</creatorcontrib><title>Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>A study of the thickness growth rate of anodized porous alumina membranes (PAMs) and its connection to the current density during the anodization process is presented. Several samples of PAMs were prepared in a hydrate solution of 0.3 M oxalic acid, under applied voltages of 40 and 50 V with varying solution temperatures in a purpose-built electrochemical cell. The thickness of the PAMs produced under these conditions was measured using cross section images taken by scanning electron microscopy (SEM). From these measurements, a linear expression between the growth rate of PAMs and the current density during the anodization is deduced, giving an efficiency value of 53 and 65 % for applied voltages 40 and 50 V, respectively. In steady state conditions, i.e., after the stabilization of the anodization current, this linear dependence is very conveniently transformed into linear dependence of thickness versus total anodization time, providing thus a simple method for controlling the thickness of the produced membranes. Finally, from the Arrhenius-type plot of the thickness growth rate versus temperature and the anodization current density vs temperature a mean value of 48.5 kJ mol −1 for the aluminum oxide formation activation energy E a is deduced.</description><subject>Aluminum oxide</subject><subject>Anodizing</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Membranes</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Steady state</subject><subject>Voltage</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUcGOFCEQJUYTx10_wBtHL-0WDNDgzUx012STvWiyN0LT1S4rDSN0H8Yv8LOlHfeqB1Ik9d6revUIecPgHQPoryoDDdABEx0oDZ14RnZM9rzTeq-fkx0AZ5027P4leVXrIwAYrsSO_DrktJQcY0jf6PKA7QX_PWGtNE8UI_rW9Q84B-9iPNFjyePqcaTHXPJaqYvrHJKjM85DcY33_o9KU8RNYPv7tRRMCx0x1bCc6LiWp2Eu5TH8dEvI6ZK8mFys-PpvvSBfP338crjpbu-uPx8-3HZecLF0fkAJEgSTvJV-AGTMO1SjUXISzqtJ94PXBgbFnNJyPwyaD72RehwV57i_IG_Pus3JjxXrYudQPcbYlm-GLOsVZ4L1hv8fKqVRxoASDcrOUF9yrQUneyxhduVkGdgtIHsOyLaA7BaQ3Tj8zKnH7SBY7GNeS2rm_0H6DauplhQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Christoulaki, A.</creator><creator>Dellis, S.</creator><creator>Spiliopoulos, N.</creator><creator>Anastassopoulos, D. L.</creator><creator>Vradis, A. A.</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization</title><author>Christoulaki, A. ; Dellis, S. ; Spiliopoulos, N. ; Anastassopoulos, D. L. ; Vradis, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-cbe505041520507b0e11cae6d965f4ac6f87bc890b61a6853bb82b7958dd622e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum oxide</topic><topic>Anodizing</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Membranes</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Steady state</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christoulaki, A.</creatorcontrib><creatorcontrib>Dellis, S.</creatorcontrib><creatorcontrib>Spiliopoulos, N.</creatorcontrib><creatorcontrib>Anastassopoulos, D. L.</creatorcontrib><creatorcontrib>Vradis, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christoulaki, A.</au><au>Dellis, S.</au><au>Spiliopoulos, N.</au><au>Anastassopoulos, D. L.</au><au>Vradis, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>44</volume><issue>6</issue><spage>701</spage><epage>707</epage><pages>701-707</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>A study of the thickness growth rate of anodized porous alumina membranes (PAMs) and its connection to the current density during the anodization process is presented. Several samples of PAMs were prepared in a hydrate solution of 0.3 M oxalic acid, under applied voltages of 40 and 50 V with varying solution temperatures in a purpose-built electrochemical cell. The thickness of the PAMs produced under these conditions was measured using cross section images taken by scanning electron microscopy (SEM). From these measurements, a linear expression between the growth rate of PAMs and the current density during the anodization is deduced, giving an efficiency value of 53 and 65 % for applied voltages 40 and 50 V, respectively. In steady state conditions, i.e., after the stabilization of the anodization current, this linear dependence is very conveniently transformed into linear dependence of thickness versus total anodization time, providing thus a simple method for controlling the thickness of the produced membranes. Finally, from the Arrhenius-type plot of the thickness growth rate versus temperature and the anodization current density vs temperature a mean value of 48.5 kJ mol −1 for the aluminum oxide formation activation energy E a is deduced.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-014-0680-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2014-06, Vol.44 (6), p.701-707
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_miscellaneous_1762141792
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Anodizing
Chemistry
Chemistry and Materials Science
Current density
Electric potential
Electrochemistry
Industrial Chemistry/Chemical Engineering
Membranes
Physical Chemistry
Research Article
Scanning electron microscopy
Steady state
Voltage
title Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20thickness%20of%20electrochemically%20produced%20porous%20alumina%20membranes:%20the%20role%20of%20the%20current%20density%20during%20the%20anodization&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Christoulaki,%20A.&rft.date=2014-06-01&rft.volume=44&rft.issue=6&rft.spage=701&rft.epage=707&rft.pages=701-707&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-014-0680-4&rft_dat=%3Cproquest_cross%3E1762141792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559699064&rft_id=info:pmid/&rfr_iscdi=true