A bioinformatics method for predicting long noncoding RNAs associated with vascular disease
Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2014-08, Vol.57 (8), p.852-857 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 857 |
---|---|
container_issue | 8 |
container_start_page | 852 |
container_title | Science China. Life sciences |
container_volume | 57 |
creator | Li, JianWei Gao, Cheng Wang, YuChen Ma, Wei Tu, Jian Wang, JunPei Chen, ZhenZhen Kong, Wei Cui, QingHua |
description | Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease. |
doi_str_mv | 10.1007/s11427-014-4692-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762141636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661847388</cqvip_id><sourcerecordid>1552376089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS1ERKIkP4AGWdDQDPj9KFcRBKQIJAQVheW172QdzYw39gxR_n287BIhCuLCz-8cX_sg9JKSd5QQ_b5SKpjuCBWdUJZ14hk6oUbZjhpjn7e50qLTnMhjdF7rDWmNc8K0foGOmaRECGlP0M8VXqecpj6X0c8pVDzCvMkRtw28LRBTmNN0jYfcuilPIcfd8tuXVcW-1hySnyHiuzRv8C9fwzL4gmOq4CucoaPeDxXOD-Mp-vHxw_eLT93V18vPF6urLkhi5o4G0FQBMAi9Z4YAWC2CNUpyQbzVSokovdeWRh96wjzEvhc8CBBBmLXlp-jt3ndb8u0CdXZjqgGGwU-Ql-qoVowKqrh6GlWs_S0ngjyNSsm4VsTsCnjzD3qTlzK1N_-mKJHc8EbRPRVKrrVA77Yljb7cO0rcLlK3j9S1SN0uUiea5tXBeVmPEB8VfwJsANsDtR1N11D-uvo_rq8PlWxarLdN92isFDVCc2P4A6ugthc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552105383</pqid></control><display><type>article</type><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</creator><creatorcontrib>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</creatorcontrib><description>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-014-4692-4</identifier><identifier>PMID: 25104459</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Base Sequence ; Bioinformatics ; Biomedical and Life Sciences ; Cell Movement ; Cell Proliferation ; China ; Computational Biology ; Diagnosis ; DNA Primers ; Human ; Humans ; Life Sciences ; Migration ; Muscle, Smooth, Vascular - cytology ; Muscles ; Real-Time Polymerase Chain Reaction ; Research Paper ; Ribonucleic acids ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - physiology ; Vascular Diseases - genetics ; Vascular Diseases - pathology ; 人类疾病 ; 全球范围 ; 心血管疾病 ; 生物信息学 ; 血管平滑肌细胞 ; 血管性疾病 ; 非编码RNA ; 预测性能</subject><ispartof>Science China. Life sciences, 2014-08, Vol.57 (8), p.852-857</ispartof><rights>The Author(s) 2014</rights><rights>Science in China Press and Springer-Verlag GmbH 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</citedby><cites>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60112X/60112X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-014-4692-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-014-4692-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25104459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, JianWei</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, YuChen</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Jian</creatorcontrib><creatorcontrib>Wang, JunPei</creatorcontrib><creatorcontrib>Chen, ZhenZhen</creatorcontrib><creatorcontrib>Kong, Wei</creatorcontrib><creatorcontrib>Cui, QingHua</creatorcontrib><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</description><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>China</subject><subject>Computational Biology</subject><subject>Diagnosis</subject><subject>DNA Primers</subject><subject>Human</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Migration</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscles</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Research Paper</subject><subject>Ribonucleic acids</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - physiology</subject><subject>Vascular Diseases - genetics</subject><subject>Vascular Diseases - pathology</subject><subject>人类疾病</subject><subject>全球范围</subject><subject>心血管疾病</subject><subject>生物信息学</subject><subject>血管平滑肌细胞</subject><subject>血管性疾病</subject><subject>非编码RNA</subject><subject>预测性能</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkTtvFDEUhS1ERKIkP4AGWdDQDPj9KFcRBKQIJAQVheW172QdzYw39gxR_n287BIhCuLCz-8cX_sg9JKSd5QQ_b5SKpjuCBWdUJZ14hk6oUbZjhpjn7e50qLTnMhjdF7rDWmNc8K0foGOmaRECGlP0M8VXqecpj6X0c8pVDzCvMkRtw28LRBTmNN0jYfcuilPIcfd8tuXVcW-1hySnyHiuzRv8C9fwzL4gmOq4CucoaPeDxXOD-Mp-vHxw_eLT93V18vPF6urLkhi5o4G0FQBMAi9Z4YAWC2CNUpyQbzVSokovdeWRh96wjzEvhc8CBBBmLXlp-jt3ndb8u0CdXZjqgGGwU-Ql-qoVowKqrh6GlWs_S0ngjyNSsm4VsTsCnjzD3qTlzK1N_-mKJHc8EbRPRVKrrVA77Yljb7cO0rcLlK3j9S1SN0uUiea5tXBeVmPEB8VfwJsANsDtR1N11D-uvo_rq8PlWxarLdN92isFDVCc2P4A6ugthc</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Li, JianWei</creator><creator>Gao, Cheng</creator><creator>Wang, YuChen</creator><creator>Ma, Wei</creator><creator>Tu, Jian</creator><creator>Wang, JunPei</creator><creator>Chen, ZhenZhen</creator><creator>Kong, Wei</creator><creator>Cui, QingHua</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><author>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>China</topic><topic>Computational Biology</topic><topic>Diagnosis</topic><topic>DNA Primers</topic><topic>Human</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Migration</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscles</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Research Paper</topic><topic>Ribonucleic acids</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - physiology</topic><topic>Vascular Diseases - genetics</topic><topic>Vascular Diseases - pathology</topic><topic>人类疾病</topic><topic>全球范围</topic><topic>心血管疾病</topic><topic>生物信息学</topic><topic>血管平滑肌细胞</topic><topic>血管性疾病</topic><topic>非编码RNA</topic><topic>预测性能</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, JianWei</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, YuChen</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Jian</creatorcontrib><creatorcontrib>Wang, JunPei</creatorcontrib><creatorcontrib>Chen, ZhenZhen</creatorcontrib><creatorcontrib>Kong, Wei</creatorcontrib><creatorcontrib>Cui, QingHua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, JianWei</au><au>Gao, Cheng</au><au>Wang, YuChen</au><au>Ma, Wei</au><au>Tu, Jian</au><au>Wang, JunPei</au><au>Chen, ZhenZhen</au><au>Kong, Wei</au><au>Cui, QingHua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>57</volume><issue>8</issue><spage>852</spage><epage>857</epage><pages>852-857</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>25104459</pmid><doi>10.1007/s11427-014-4692-4</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7305 |
ispartof | Science China. Life sciences, 2014-08, Vol.57 (8), p.852-857 |
issn | 1674-7305 1869-1889 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762141636 |
source | MEDLINE; SpringerLink Journals; Alma/SFX Local Collection |
subjects | Base Sequence Bioinformatics Biomedical and Life Sciences Cell Movement Cell Proliferation China Computational Biology Diagnosis DNA Primers Human Humans Life Sciences Migration Muscle, Smooth, Vascular - cytology Muscles Real-Time Polymerase Chain Reaction Research Paper Ribonucleic acids RNA, Long Noncoding - genetics RNA, Long Noncoding - physiology Vascular Diseases - genetics Vascular Diseases - pathology 人类疾病 全球范围 心血管疾病 生物信息学 血管平滑肌细胞 血管性疾病 非编码RNA 预测性能 |
title | A bioinformatics method for predicting long noncoding RNAs associated with vascular disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioinformatics%20method%20for%20predicting%20long%20noncoding%20RNAs%20associated%20with%20vascular%20disease&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Li,%20JianWei&rft.date=2014-08-01&rft.volume=57&rft.issue=8&rft.spage=852&rft.epage=857&rft.pages=852-857&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-014-4692-4&rft_dat=%3Cproquest_cross%3E1552376089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552105383&rft_id=info:pmid/25104459&rft_cqvip_id=661847388&rfr_iscdi=true |