A bioinformatics method for predicting long noncoding RNAs associated with vascular disease

Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2014-08, Vol.57 (8), p.852-857
Hauptverfasser: Li, JianWei, Gao, Cheng, Wang, YuChen, Ma, Wei, Tu, Jian, Wang, JunPei, Chen, ZhenZhen, Kong, Wei, Cui, QingHua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 857
container_issue 8
container_start_page 852
container_title Science China. Life sciences
container_volume 57
creator Li, JianWei
Gao, Cheng
Wang, YuChen
Ma, Wei
Tu, Jian
Wang, JunPei
Chen, ZhenZhen
Kong, Wei
Cui, QingHua
description Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.
doi_str_mv 10.1007/s11427-014-4692-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762141636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>661847388</cqvip_id><sourcerecordid>1552376089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS1ERKIkP4AGWdDQDPj9KFcRBKQIJAQVheW172QdzYw39gxR_n287BIhCuLCz-8cX_sg9JKSd5QQ_b5SKpjuCBWdUJZ14hk6oUbZjhpjn7e50qLTnMhjdF7rDWmNc8K0foGOmaRECGlP0M8VXqecpj6X0c8pVDzCvMkRtw28LRBTmNN0jYfcuilPIcfd8tuXVcW-1hySnyHiuzRv8C9fwzL4gmOq4CucoaPeDxXOD-Mp-vHxw_eLT93V18vPF6urLkhi5o4G0FQBMAi9Z4YAWC2CNUpyQbzVSokovdeWRh96wjzEvhc8CBBBmLXlp-jt3ndb8u0CdXZjqgGGwU-Ql-qoVowKqrh6GlWs_S0ngjyNSsm4VsTsCnjzD3qTlzK1N_-mKJHc8EbRPRVKrrVA77Yljb7cO0rcLlK3j9S1SN0uUiea5tXBeVmPEB8VfwJsANsDtR1N11D-uvo_rq8PlWxarLdN92isFDVCc2P4A6ugthc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552105383</pqid></control><display><type>article</type><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</creator><creatorcontrib>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</creatorcontrib><description>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-014-4692-4</identifier><identifier>PMID: 25104459</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Base Sequence ; Bioinformatics ; Biomedical and Life Sciences ; Cell Movement ; Cell Proliferation ; China ; Computational Biology ; Diagnosis ; DNA Primers ; Human ; Humans ; Life Sciences ; Migration ; Muscle, Smooth, Vascular - cytology ; Muscles ; Real-Time Polymerase Chain Reaction ; Research Paper ; Ribonucleic acids ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - physiology ; Vascular Diseases - genetics ; Vascular Diseases - pathology ; 人类疾病 ; 全球范围 ; 心血管疾病 ; 生物信息学 ; 血管平滑肌细胞 ; 血管性疾病 ; 非编码RNA ; 预测性能</subject><ispartof>Science China. Life sciences, 2014-08, Vol.57 (8), p.852-857</ispartof><rights>The Author(s) 2014</rights><rights>Science in China Press and Springer-Verlag GmbH 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</citedby><cites>FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60112X/60112X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-014-4692-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-014-4692-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25104459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, JianWei</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, YuChen</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Jian</creatorcontrib><creatorcontrib>Wang, JunPei</creatorcontrib><creatorcontrib>Chen, ZhenZhen</creatorcontrib><creatorcontrib>Kong, Wei</creatorcontrib><creatorcontrib>Cui, QingHua</creatorcontrib><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</description><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>China</subject><subject>Computational Biology</subject><subject>Diagnosis</subject><subject>DNA Primers</subject><subject>Human</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Migration</subject><subject>Muscle, Smooth, Vascular - cytology</subject><subject>Muscles</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Research Paper</subject><subject>Ribonucleic acids</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - physiology</subject><subject>Vascular Diseases - genetics</subject><subject>Vascular Diseases - pathology</subject><subject>人类疾病</subject><subject>全球范围</subject><subject>心血管疾病</subject><subject>生物信息学</subject><subject>血管平滑肌细胞</subject><subject>血管性疾病</subject><subject>非编码RNA</subject><subject>预测性能</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkTtvFDEUhS1ERKIkP4AGWdDQDPj9KFcRBKQIJAQVheW172QdzYw39gxR_n287BIhCuLCz-8cX_sg9JKSd5QQ_b5SKpjuCBWdUJZ14hk6oUbZjhpjn7e50qLTnMhjdF7rDWmNc8K0foGOmaRECGlP0M8VXqecpj6X0c8pVDzCvMkRtw28LRBTmNN0jYfcuilPIcfd8tuXVcW-1hySnyHiuzRv8C9fwzL4gmOq4CucoaPeDxXOD-Mp-vHxw_eLT93V18vPF6urLkhi5o4G0FQBMAi9Z4YAWC2CNUpyQbzVSokovdeWRh96wjzEvhc8CBBBmLXlp-jt3ndb8u0CdXZjqgGGwU-Ql-qoVowKqrh6GlWs_S0ngjyNSsm4VsTsCnjzD3qTlzK1N_-mKJHc8EbRPRVKrrVA77Yljb7cO0rcLlK3j9S1SN0uUiea5tXBeVmPEB8VfwJsANsDtR1N11D-uvo_rq8PlWxarLdN92isFDVCc2P4A6ugthc</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Li, JianWei</creator><creator>Gao, Cheng</creator><creator>Wang, YuChen</creator><creator>Ma, Wei</creator><creator>Tu, Jian</creator><creator>Wang, JunPei</creator><creator>Chen, ZhenZhen</creator><creator>Kong, Wei</creator><creator>Cui, QingHua</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140801</creationdate><title>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</title><author>Li, JianWei ; Gao, Cheng ; Wang, YuChen ; Ma, Wei ; Tu, Jian ; Wang, JunPei ; Chen, ZhenZhen ; Kong, Wei ; Cui, QingHua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-1ce716ee2ecfa280ee974c9865340a97664d5aa791dacf02aedff43c4e4c48b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>China</topic><topic>Computational Biology</topic><topic>Diagnosis</topic><topic>DNA Primers</topic><topic>Human</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Migration</topic><topic>Muscle, Smooth, Vascular - cytology</topic><topic>Muscles</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Research Paper</topic><topic>Ribonucleic acids</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - physiology</topic><topic>Vascular Diseases - genetics</topic><topic>Vascular Diseases - pathology</topic><topic>人类疾病</topic><topic>全球范围</topic><topic>心血管疾病</topic><topic>生物信息学</topic><topic>血管平滑肌细胞</topic><topic>血管性疾病</topic><topic>非编码RNA</topic><topic>预测性能</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, JianWei</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, YuChen</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Jian</creatorcontrib><creatorcontrib>Wang, JunPei</creatorcontrib><creatorcontrib>Chen, ZhenZhen</creatorcontrib><creatorcontrib>Kong, Wei</creatorcontrib><creatorcontrib>Cui, QingHua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, JianWei</au><au>Gao, Cheng</au><au>Wang, YuChen</au><au>Ma, Wei</au><au>Tu, Jian</au><au>Wang, JunPei</au><au>Chen, ZhenZhen</au><au>Kong, Wei</au><au>Cui, QingHua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioinformatics method for predicting long noncoding RNAs associated with vascular disease</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>57</volume><issue>8</issue><spage>852</spage><epage>857</epage><pages>852-857</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>Long noncoding RNAs(lncRNAs)play important roles in human diseases including vascular disease.Given the large number of lncRNAs,however,whether the majority of them are associated with vascular disease remains unknown.For this purpose,here we present a genomic location based bioinformatics method to predict the lncRNAs associated with vascular disease.We applied the presented method to globally screen the human lncRNAs potentially involved in vascular disease.As a result,we predicted 3043 putative vascular disease associated lncRNAs.To test the accuracy of the method,we selected 10 lncRNAs predicted to be implicated in proliferation and migration of vascular smooth muscle cells(VSMCs)for further experimental validation.The results confirmed that eight of the 10 lncRNAs(80%)are validated.This result suggests that the presented method has a reliable prediction performance.Finally,the presented bioinformatics method and the predicted vascular disease associated lncRNAs together may provide helps for not only better understanding of the roles of lncRNAs in vascular disease but also the identification of novel molecules for the diagnosis and therapy of vascular disease.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>25104459</pmid><doi>10.1007/s11427-014-4692-4</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-7305
ispartof Science China. Life sciences, 2014-08, Vol.57 (8), p.852-857
issn 1674-7305
1869-1889
language eng
recordid cdi_proquest_miscellaneous_1762141636
source MEDLINE; SpringerLink Journals; Alma/SFX Local Collection
subjects Base Sequence
Bioinformatics
Biomedical and Life Sciences
Cell Movement
Cell Proliferation
China
Computational Biology
Diagnosis
DNA Primers
Human
Humans
Life Sciences
Migration
Muscle, Smooth, Vascular - cytology
Muscles
Real-Time Polymerase Chain Reaction
Research Paper
Ribonucleic acids
RNA, Long Noncoding - genetics
RNA, Long Noncoding - physiology
Vascular Diseases - genetics
Vascular Diseases - pathology
人类疾病
全球范围
心血管疾病
生物信息学
血管平滑肌细胞
血管性疾病
非编码RNA
预测性能
title A bioinformatics method for predicting long noncoding RNAs associated with vascular disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioinformatics%20method%20for%20predicting%20long%20noncoding%20RNAs%20associated%20with%20vascular%20disease&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Li,%20JianWei&rft.date=2014-08-01&rft.volume=57&rft.issue=8&rft.spage=852&rft.epage=857&rft.pages=852-857&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-014-4692-4&rft_dat=%3Cproquest_cross%3E1552376089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552105383&rft_id=info:pmid/25104459&rft_cqvip_id=661847388&rfr_iscdi=true