A new version of a rumpling predictive model in thermal barrier coatings

In many cases the modelling of rumpling evolutions appears as a necessary step in the development of a TBC life prediction methodology. The analytical model initiated by Balint and Hutchinson (2005) is further developed and improved, incorporating two new possibilities: 1. In addition to the 2D roug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2013-11, Vol.42, p.402-421
Hauptverfasser: Vaunois, Jean-Roch, Dorvaux, Jean-Marc, Kanouté, Pascale, Chaboche, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue
container_start_page 402
container_title European journal of mechanics, A, Solids
container_volume 42
creator Vaunois, Jean-Roch
Dorvaux, Jean-Marc
Kanouté, Pascale
Chaboche, Jean-Louis
description In many cases the modelling of rumpling evolutions appears as a necessary step in the development of a TBC life prediction methodology. The analytical model initiated by Balint and Hutchinson (2005) is further developed and improved, incorporating two new possibilities: 1. In addition to the 2D roughness description (with a single cosine model of the undulation), a 3D undulation shape is now available (a double cosine model), following a similar approach; 2. Both the 2D and the 3D undulation models are modified in order to allow any kind of thermomechanical cyclic loading applied by the substrate, with different maximum temperatures, including the possibility of oxidation, associated growth strains and oxide yielding during the temperature transients. The successive modifications in the model are evaluated by successively comparing the rumpling responses at four maximum temperatures. A parametric analysis reveals the significant role of the initial undulation geometry on the influence of several material factors like the bond coat creep resistance or the presence or not of the martensitic transformation during the temperature cycle. Moreover the initial geometry also greatly affects the difference of rumpling predicted under cyclic oxidation and isothermal oxidation. •An analytical rumpling model is extended to other geometrical and loading conditions.•The new model is now performing any kind of strain–temperature cyclic conditions.•A parametric study reveals additional capabilities in terms of initial geometry parameters.•Effects of oxide yield limit, martensitic transformation and bond coat creep are studied.
doi_str_mv 10.1016/j.euromechsol.2013.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762140690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753813000752</els_id><sourcerecordid>1513489021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-4f491359f33c8371dbe59a385e8baa366446ea9de661e2f570b0a79afbf344473</originalsourceid><addsrcrecordid>eNqNkb1u2zAURokiAeo4eQd26yL1UvwfDaONAxjo0swERV3VNCTRJWUXffvIcIdu6XSXc7_hHEI-MagZMPXlWOM5pxHDoaShboDxGlQNDD6QFTOaV7ox8o6swFpdacnNR_JQyhEAGmjYiuw2dMLf9IK5xDTR1FNP83k8DXH6SU8ZuxjmeEE6pg4HGic6HzCPfqCtzzlipiH5eWHLI7nv_VDw6e9dk9dvX39sd9X--_PLdrOvgpB6rkQvLOPS9pwHwzXrWpTWcyPRtN5zpYRQ6G2HSjFseqmhBa-t79ueCyE0X5PPt91TTr_OWGY3xhJwGPyE6Vwc06phApSF91GlmWTWNOZ9VDIujF2ULai9oSGnUjL27pTj6PMfx8Bdm7ij-6eJuzZxoNzSZPnd3n5xMXRZ9LkSIk5h0ZwxzK5L8T9W3gBo3JpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513489021</pqid></control><display><type>article</type><title>A new version of a rumpling predictive model in thermal barrier coatings</title><source>Elsevier ScienceDirect Journals</source><creator>Vaunois, Jean-Roch ; Dorvaux, Jean-Marc ; Kanouté, Pascale ; Chaboche, Jean-Louis</creator><creatorcontrib>Vaunois, Jean-Roch ; Dorvaux, Jean-Marc ; Kanouté, Pascale ; Chaboche, Jean-Louis</creatorcontrib><description>In many cases the modelling of rumpling evolutions appears as a necessary step in the development of a TBC life prediction methodology. The analytical model initiated by Balint and Hutchinson (2005) is further developed and improved, incorporating two new possibilities: 1. In addition to the 2D roughness description (with a single cosine model of the undulation), a 3D undulation shape is now available (a double cosine model), following a similar approach; 2. Both the 2D and the 3D undulation models are modified in order to allow any kind of thermomechanical cyclic loading applied by the substrate, with different maximum temperatures, including the possibility of oxidation, associated growth strains and oxide yielding during the temperature transients. The successive modifications in the model are evaluated by successively comparing the rumpling responses at four maximum temperatures. A parametric analysis reveals the significant role of the initial undulation geometry on the influence of several material factors like the bond coat creep resistance or the presence or not of the martensitic transformation during the temperature cycle. Moreover the initial geometry also greatly affects the difference of rumpling predicted under cyclic oxidation and isothermal oxidation. •An analytical rumpling model is extended to other geometrical and loading conditions.•The new model is now performing any kind of strain–temperature cyclic conditions.•A parametric study reveals additional capabilities in terms of initial geometry parameters.•Effects of oxide yield limit, martensitic transformation and bond coat creep are studied.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2013.06.010</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Creep ; Creep strength ; Evolution ; Fatigue (materials) ; Life prediction ; Mathematical analysis ; Mathematical models ; Oxidation ; Oxides ; Parametric analysis ; Roughness ; Thermal barrier coatings ; Three dimensional ; Three dimensional models ; Two dimensional</subject><ispartof>European journal of mechanics, A, Solids, 2013-11, Vol.42, p.402-421</ispartof><rights>2013 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-4f491359f33c8371dbe59a385e8baa366446ea9de661e2f570b0a79afbf344473</citedby><cites>FETCH-LOGICAL-c457t-4f491359f33c8371dbe59a385e8baa366446ea9de661e2f570b0a79afbf344473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0997753813000752$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Vaunois, Jean-Roch</creatorcontrib><creatorcontrib>Dorvaux, Jean-Marc</creatorcontrib><creatorcontrib>Kanouté, Pascale</creatorcontrib><creatorcontrib>Chaboche, Jean-Louis</creatorcontrib><title>A new version of a rumpling predictive model in thermal barrier coatings</title><title>European journal of mechanics, A, Solids</title><description>In many cases the modelling of rumpling evolutions appears as a necessary step in the development of a TBC life prediction methodology. The analytical model initiated by Balint and Hutchinson (2005) is further developed and improved, incorporating two new possibilities: 1. In addition to the 2D roughness description (with a single cosine model of the undulation), a 3D undulation shape is now available (a double cosine model), following a similar approach; 2. Both the 2D and the 3D undulation models are modified in order to allow any kind of thermomechanical cyclic loading applied by the substrate, with different maximum temperatures, including the possibility of oxidation, associated growth strains and oxide yielding during the temperature transients. The successive modifications in the model are evaluated by successively comparing the rumpling responses at four maximum temperatures. A parametric analysis reveals the significant role of the initial undulation geometry on the influence of several material factors like the bond coat creep resistance or the presence or not of the martensitic transformation during the temperature cycle. Moreover the initial geometry also greatly affects the difference of rumpling predicted under cyclic oxidation and isothermal oxidation. •An analytical rumpling model is extended to other geometrical and loading conditions.•The new model is now performing any kind of strain–temperature cyclic conditions.•A parametric study reveals additional capabilities in terms of initial geometry parameters.•Effects of oxide yield limit, martensitic transformation and bond coat creep are studied.</description><subject>Creep</subject><subject>Creep strength</subject><subject>Evolution</subject><subject>Fatigue (materials)</subject><subject>Life prediction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Parametric analysis</subject><subject>Roughness</subject><subject>Thermal barrier coatings</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Two dimensional</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkb1u2zAURokiAeo4eQd26yL1UvwfDaONAxjo0swERV3VNCTRJWUXffvIcIdu6XSXc7_hHEI-MagZMPXlWOM5pxHDoaShboDxGlQNDD6QFTOaV7ox8o6swFpdacnNR_JQyhEAGmjYiuw2dMLf9IK5xDTR1FNP83k8DXH6SU8ZuxjmeEE6pg4HGic6HzCPfqCtzzlipiH5eWHLI7nv_VDw6e9dk9dvX39sd9X--_PLdrOvgpB6rkQvLOPS9pwHwzXrWpTWcyPRtN5zpYRQ6G2HSjFseqmhBa-t79ueCyE0X5PPt91TTr_OWGY3xhJwGPyE6Vwc06phApSF91GlmWTWNOZ9VDIujF2ULai9oSGnUjL27pTj6PMfx8Bdm7ij-6eJuzZxoNzSZPnd3n5xMXRZ9LkSIk5h0ZwxzK5L8T9W3gBo3JpY</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Vaunois, Jean-Roch</creator><creator>Dorvaux, Jean-Marc</creator><creator>Kanouté, Pascale</creator><creator>Chaboche, Jean-Louis</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20131101</creationdate><title>A new version of a rumpling predictive model in thermal barrier coatings</title><author>Vaunois, Jean-Roch ; Dorvaux, Jean-Marc ; Kanouté, Pascale ; Chaboche, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-4f491359f33c8371dbe59a385e8baa366446ea9de661e2f570b0a79afbf344473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Creep</topic><topic>Creep strength</topic><topic>Evolution</topic><topic>Fatigue (materials)</topic><topic>Life prediction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Parametric analysis</topic><topic>Roughness</topic><topic>Thermal barrier coatings</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaunois, Jean-Roch</creatorcontrib><creatorcontrib>Dorvaux, Jean-Marc</creatorcontrib><creatorcontrib>Kanouté, Pascale</creatorcontrib><creatorcontrib>Chaboche, Jean-Louis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaunois, Jean-Roch</au><au>Dorvaux, Jean-Marc</au><au>Kanouté, Pascale</au><au>Chaboche, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new version of a rumpling predictive model in thermal barrier coatings</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>42</volume><spage>402</spage><epage>421</epage><pages>402-421</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>In many cases the modelling of rumpling evolutions appears as a necessary step in the development of a TBC life prediction methodology. The analytical model initiated by Balint and Hutchinson (2005) is further developed and improved, incorporating two new possibilities: 1. In addition to the 2D roughness description (with a single cosine model of the undulation), a 3D undulation shape is now available (a double cosine model), following a similar approach; 2. Both the 2D and the 3D undulation models are modified in order to allow any kind of thermomechanical cyclic loading applied by the substrate, with different maximum temperatures, including the possibility of oxidation, associated growth strains and oxide yielding during the temperature transients. The successive modifications in the model are evaluated by successively comparing the rumpling responses at four maximum temperatures. A parametric analysis reveals the significant role of the initial undulation geometry on the influence of several material factors like the bond coat creep resistance or the presence or not of the martensitic transformation during the temperature cycle. Moreover the initial geometry also greatly affects the difference of rumpling predicted under cyclic oxidation and isothermal oxidation. •An analytical rumpling model is extended to other geometrical and loading conditions.•The new model is now performing any kind of strain–temperature cyclic conditions.•A parametric study reveals additional capabilities in terms of initial geometry parameters.•Effects of oxide yield limit, martensitic transformation and bond coat creep are studied.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2013.06.010</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2013-11, Vol.42, p.402-421
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_miscellaneous_1762140690
source Elsevier ScienceDirect Journals
subjects Creep
Creep strength
Evolution
Fatigue (materials)
Life prediction
Mathematical analysis
Mathematical models
Oxidation
Oxides
Parametric analysis
Roughness
Thermal barrier coatings
Three dimensional
Three dimensional models
Two dimensional
title A new version of a rumpling predictive model in thermal barrier coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20version%20of%20a%20rumpling%20predictive%20model%20in%20thermal%20barrier%20coatings&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Vaunois,%20Jean-Roch&rft.date=2013-11-01&rft.volume=42&rft.spage=402&rft.epage=421&rft.pages=402-421&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2013.06.010&rft_dat=%3Cproquest_cross%3E1513489021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513489021&rft_id=info:pmid/&rft_els_id=S0997753813000752&rfr_iscdi=true