Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes

In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2014-11, Vol.333 (23), p.6224-6236
Hauptverfasser: Haddadzadeh Hendou, Ramtin, Karami Mohammadi, Ardeshir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6236
container_issue 23
container_start_page 6224
container_title Journal of sound and vibration
container_volume 333
creator Haddadzadeh Hendou, Ramtin
Karami Mohammadi, Ardeshir
description In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system׳s characteristics on this critical amplitude has also been discussed.
doi_str_mv 10.1016/j.jsv.2014.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762140649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X14005768</els_id><sourcerecordid>1762140649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e1edc7658fd723edcf83a5821dad2a226a0fe3f00b9ac067042733541ed739713</originalsourceid><addsrcrecordid>eNqFkU1OHDEQha0okTIhHICdlyzSnfJP291iRRBJkJCyAYmdZdzV4JHbHuyeidjlDrkhJ8FoWLBKVlUqve9J9R4hRwxaBkx9Xbfrsms5MNmCbgH4O7JiMHRN36n-PVnVC2-kgpuP5FMpawAYpJArUq6yjcVjXKiNNjwWX2iaaEwx-Ig20_NtwPz05-83zDFtQ_B09i6n5hbtTH_75Z4u95jnhMGWxTs62nnj490XuvP2jU1MebaBzmnE8pl8mGwoePg6D8j19_Ors5_N5a8fF2enl42TQiwNMhydVl0_jZqLuk-9sF3P2WhHbjlXFiYUE8DtYB0oDZJrITpZMS0GzcQBOd77bnJ62GJZzOyLwxBsxLQthmnFmQQlh_9LFR-EYoPgVcr20ppCKRkns8l-tvnRMDAvXZi1qV2Yly4MaFOTr8zJnsH67s5jNsXVzB2OPqNbzJj8P-hnVoOUoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629361932</pqid></control><display><type>article</type><title>Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes</title><source>Elsevier ScienceDirect Journals</source><creator>Haddadzadeh Hendou, Ramtin ; Karami Mohammadi, Ardeshir</creator><creatorcontrib>Haddadzadeh Hendou, Ramtin ; Karami Mohammadi, Ardeshir</creatorcontrib><description>In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system׳s characteristics on this critical amplitude has also been discussed.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2014.07.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Amplitudes ; Damping ; Equations of motion ; Galerkin methods ; Mathematical models ; Nonlinearity ; Oscillators ; Vibration</subject><ispartof>Journal of sound and vibration, 2014-11, Vol.333 (23), p.6224-6236</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e1edc7658fd723edcf83a5821dad2a226a0fe3f00b9ac067042733541ed739713</citedby><cites>FETCH-LOGICAL-c433t-e1edc7658fd723edcf83a5821dad2a226a0fe3f00b9ac067042733541ed739713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2014.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Haddadzadeh Hendou, Ramtin</creatorcontrib><creatorcontrib>Karami Mohammadi, Ardeshir</creatorcontrib><title>Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes</title><title>Journal of sound and vibration</title><description>In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system׳s characteristics on this critical amplitude has also been discussed.</description><subject>Amplitudes</subject><subject>Damping</subject><subject>Equations of motion</subject><subject>Galerkin methods</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Vibration</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1OHDEQha0okTIhHICdlyzSnfJP291iRRBJkJCyAYmdZdzV4JHbHuyeidjlDrkhJ8FoWLBKVlUqve9J9R4hRwxaBkx9Xbfrsms5MNmCbgH4O7JiMHRN36n-PVnVC2-kgpuP5FMpawAYpJArUq6yjcVjXKiNNjwWX2iaaEwx-Ig20_NtwPz05-83zDFtQ_B09i6n5hbtTH_75Z4u95jnhMGWxTs62nnj490XuvP2jU1MebaBzmnE8pl8mGwoePg6D8j19_Ors5_N5a8fF2enl42TQiwNMhydVl0_jZqLuk-9sF3P2WhHbjlXFiYUE8DtYB0oDZJrITpZMS0GzcQBOd77bnJ62GJZzOyLwxBsxLQthmnFmQQlh_9LFR-EYoPgVcr20ppCKRkns8l-tvnRMDAvXZi1qV2Yly4MaFOTr8zJnsH67s5jNsXVzB2OPqNbzJj8P-hnVoOUoA</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>Haddadzadeh Hendou, Ramtin</creator><creator>Karami Mohammadi, Ardeshir</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141124</creationdate><title>Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes</title><author>Haddadzadeh Hendou, Ramtin ; Karami Mohammadi, Ardeshir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e1edc7658fd723edcf83a5821dad2a226a0fe3f00b9ac067042733541ed739713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Damping</topic><topic>Equations of motion</topic><topic>Galerkin methods</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddadzadeh Hendou, Ramtin</creatorcontrib><creatorcontrib>Karami Mohammadi, Ardeshir</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddadzadeh Hendou, Ramtin</au><au>Karami Mohammadi, Ardeshir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes</atitle><jtitle>Journal of sound and vibration</jtitle><date>2014-11-24</date><risdate>2014</risdate><volume>333</volume><issue>23</issue><spage>6224</spage><epage>6236</epage><pages>6224-6236</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>In this paper an Euler–Bernoulli model has been used for vibration analysis of micro-beams with large transverse deflection. Thermoelastic damping is considered to be the dominant damping mechanism and introduced as imaginary stiffness into the equation of motion by evaluating temperature profile as a function of lateral displacement. The obtained equation of motion is analyzed in the case of pure single mode motion by two methods; nonlinear normal mode theory and the Galerkin procedure. In contrast with the Galerkin procedure, nonlinear normal mode analysis introduces a nonconventional nonlinear damping term in modal oscillator which results in strong damping in case of large amplitude vibrations. Evaluated modal oscillators are solved using harmonic balance method and tackling damping terms introduced as an imaginary stiffness is discussed. It has been shown also that nonlinear modal analysis of micro-beam with thermoelastic damping predicts parameters such as inverse quality factor, and frequency shift, to have an extrema point at certain amplitude during transient response due to the mentioned nonlinear damping term; and the effect of system׳s characteristics on this critical amplitude has also been discussed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2014.07.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2014-11, Vol.333 (23), p.6224-6236
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_1762140649
source Elsevier ScienceDirect Journals
subjects Amplitudes
Damping
Equations of motion
Galerkin methods
Mathematical models
Nonlinearity
Oscillators
Vibration
title Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20analysis%20of%20nonlinear%20Euler%E2%80%93Bernoulli%20micro-beam%20with%20thermoelastic%20damping,%20via%20nonlinear%20normal%20modes&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Haddadzadeh%20Hendou,%20Ramtin&rft.date=2014-11-24&rft.volume=333&rft.issue=23&rft.spage=6224&rft.epage=6236&rft.pages=6224-6236&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2014.07.002&rft_dat=%3Cproquest_cross%3E1762140649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629361932&rft_id=info:pmid/&rft_els_id=S0022460X14005768&rfr_iscdi=true