Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials

The Li1.2−xNaxNi0.13Co0.13Mn0.54O2 (0≤x≤0.1) cathode materials have been synthesized by a solid-state reaction method. The effects of the Na+ contents on the structure, surface components and electrochemical performance are studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-10, Vol.240, p.530-535
Hauptverfasser: Qiu, Bao, Wang, Jun, Xia, Yonggao, Liu, Yuanzhuang, Qin, Laifen, Yao, Xiayin, Liu, Zhaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue
container_start_page 530
container_title Journal of power sources
container_volume 240
creator Qiu, Bao
Wang, Jun
Xia, Yonggao
Liu, Yuanzhuang
Qin, Laifen
Yao, Xiayin
Liu, Zhaoping
description The Li1.2−xNaxNi0.13Co0.13Mn0.54O2 (0≤x≤0.1) cathode materials have been synthesized by a solid-state reaction method. The effects of the Na+ contents on the structure, surface components and electrochemical performance are studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. The XRD data indicate that the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 samples evolve from a sole layered structure (0≤x≤0.02) to a mixture of Na+-contained layered structure (0.02
doi_str_mv 10.1016/j.jpowsour.2013.04.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762138890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313006459</els_id><sourcerecordid>1505346313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1ee55f6591684c45958efc176b163b533573bebc9bd54af8b62d91d883da2b593</originalsourceid><addsrcrecordid>eNqFkd9r2zAQx8XoYGm6f2H4ZVAo9nSSZclvKyFbC2nysj0LWT5RBcfKJKej__2UJe1r4LjjuM_94L6EfAFaAYXm27ba7sPfFA6xYhR4Rets8gOZgZK8ZFKIKzKjXKpSSsE_keuUtpRSAElnpF86h3ZKRXDF2twVNowTjsd8LHDIlRjsM-68NUOxj2GPcfL4n155qNja5yP4Ihz900grUW9YYc30HHosdmbC6M2QbshHlwN-Psc5-f1j-WvxUK42Px8X96vScimmEhCFcI1ooVG1rUUrFDoLsumg4Z3gXEjeYWfbrhe1caprWN9CrxTvDetEy-fk9jQ3X_rngGnSO58sDoMZMRySzqMYcKVaehkVVPC64cAz2pxQG0NKEZ3eR78z8VUD1UcF9Fa_KaCPCmhaZ5O58et5h0n5fy6a0fr03p2VAVa3LHPfTxzm37x4jDpZj6PF3sesgO6Dv7TqH7hsnV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505346313</pqid></control><display><type>article</type><title>Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials</title><source>Elsevier ScienceDirect Journals</source><creator>Qiu, Bao ; Wang, Jun ; Xia, Yonggao ; Liu, Yuanzhuang ; Qin, Laifen ; Yao, Xiayin ; Liu, Zhaoping</creator><creatorcontrib>Qiu, Bao ; Wang, Jun ; Xia, Yonggao ; Liu, Yuanzhuang ; Qin, Laifen ; Yao, Xiayin ; Liu, Zhaoping</creatorcontrib><description>The Li1.2−xNaxNi0.13Co0.13Mn0.54O2 (0≤x≤0.1) cathode materials have been synthesized by a solid-state reaction method. The effects of the Na+ contents on the structure, surface components and electrochemical performance are studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. The XRD data indicate that the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 samples evolve from a sole layered structure (0≤x≤0.02) to a mixture of Na+-contained layered structure (0.02&lt;x≤0.1), which would transform into the single layered structure after the initial charge and discharge process. XPS data demonstrate that some of the Na+ ions could be reversibly de-/re-intercalated for the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials. An electrochemical test reveals that a small amount of Na+ (x≤0.02) in the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials can significantly increase the rate capacity, yet the capacity retention becomes worse. We also find that the capacity retention increases with the Na+ contents. •A small amount of Na+ can significantly increase the initial discharge capacity.•Some of the Na+ ions could be reversibly de-/re-intercalated from the electrodes.•The structure evolves from a solely layered structure to a mixture of layered structure.•It could explain how the sodium species impact on the electrochemical performance.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.04.047</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Cathode material ; Cathodes ; Charge ; Diffraction ; Direct energy conversion and energy accumulation ; Discharge ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Layered lithium-excess ; Lithium-ion batteries ; Materials ; Sodium-ions content ; Sole ; Solid solution ; Transforms ; X-ray photoelectron spectroscopy ; X-rays</subject><ispartof>Journal of power sources, 2013-10, Vol.240, p.530-535</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1ee55f6591684c45958efc176b163b533573bebc9bd54af8b62d91d883da2b593</citedby><cites>FETCH-LOGICAL-c375t-1ee55f6591684c45958efc176b163b533573bebc9bd54af8b62d91d883da2b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.04.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27512492$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Bao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Liu, Yuanzhuang</creatorcontrib><creatorcontrib>Qin, Laifen</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><title>Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials</title><title>Journal of power sources</title><description>The Li1.2−xNaxNi0.13Co0.13Mn0.54O2 (0≤x≤0.1) cathode materials have been synthesized by a solid-state reaction method. The effects of the Na+ contents on the structure, surface components and electrochemical performance are studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. The XRD data indicate that the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 samples evolve from a sole layered structure (0≤x≤0.02) to a mixture of Na+-contained layered structure (0.02&lt;x≤0.1), which would transform into the single layered structure after the initial charge and discharge process. XPS data demonstrate that some of the Na+ ions could be reversibly de-/re-intercalated for the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials. An electrochemical test reveals that a small amount of Na+ (x≤0.02) in the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials can significantly increase the rate capacity, yet the capacity retention becomes worse. We also find that the capacity retention increases with the Na+ contents. •A small amount of Na+ can significantly increase the initial discharge capacity.•Some of the Na+ ions could be reversibly de-/re-intercalated from the electrodes.•The structure evolves from a solely layered structure to a mixture of layered structure.•It could explain how the sodium species impact on the electrochemical performance.</description><subject>Applied sciences</subject><subject>Cathode material</subject><subject>Cathodes</subject><subject>Charge</subject><subject>Diffraction</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Layered lithium-excess</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Sodium-ions content</subject><subject>Sole</subject><subject>Solid solution</subject><subject>Transforms</subject><subject>X-ray photoelectron spectroscopy</subject><subject>X-rays</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkd9r2zAQx8XoYGm6f2H4ZVAo9nSSZclvKyFbC2nysj0LWT5RBcfKJKej__2UJe1r4LjjuM_94L6EfAFaAYXm27ba7sPfFA6xYhR4Rets8gOZgZK8ZFKIKzKjXKpSSsE_keuUtpRSAElnpF86h3ZKRXDF2twVNowTjsd8LHDIlRjsM-68NUOxj2GPcfL4n155qNja5yP4Ihz900grUW9YYc30HHosdmbC6M2QbshHlwN-Psc5-f1j-WvxUK42Px8X96vScimmEhCFcI1ooVG1rUUrFDoLsumg4Z3gXEjeYWfbrhe1caprWN9CrxTvDetEy-fk9jQ3X_rngGnSO58sDoMZMRySzqMYcKVaehkVVPC64cAz2pxQG0NKEZ3eR78z8VUD1UcF9Fa_KaCPCmhaZ5O58et5h0n5fy6a0fr03p2VAVa3LHPfTxzm37x4jDpZj6PF3sesgO6Dv7TqH7hsnV4</recordid><startdate>20131015</startdate><enddate>20131015</enddate><creator>Qiu, Bao</creator><creator>Wang, Jun</creator><creator>Xia, Yonggao</creator><creator>Liu, Yuanzhuang</creator><creator>Qin, Laifen</creator><creator>Yao, Xiayin</creator><creator>Liu, Zhaoping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131015</creationdate><title>Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials</title><author>Qiu, Bao ; Wang, Jun ; Xia, Yonggao ; Liu, Yuanzhuang ; Qin, Laifen ; Yao, Xiayin ; Liu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1ee55f6591684c45958efc176b163b533573bebc9bd54af8b62d91d883da2b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cathode material</topic><topic>Cathodes</topic><topic>Charge</topic><topic>Diffraction</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Layered lithium-excess</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Sodium-ions content</topic><topic>Sole</topic><topic>Solid solution</topic><topic>Transforms</topic><topic>X-ray photoelectron spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Bao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Liu, Yuanzhuang</creatorcontrib><creatorcontrib>Qin, Laifen</creatorcontrib><creatorcontrib>Yao, Xiayin</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Bao</au><au>Wang, Jun</au><au>Xia, Yonggao</au><au>Liu, Yuanzhuang</au><au>Qin, Laifen</au><au>Yao, Xiayin</au><au>Liu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials</atitle><jtitle>Journal of power sources</jtitle><date>2013-10-15</date><risdate>2013</risdate><volume>240</volume><spage>530</spage><epage>535</epage><pages>530-535</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The Li1.2−xNaxNi0.13Co0.13Mn0.54O2 (0≤x≤0.1) cathode materials have been synthesized by a solid-state reaction method. The effects of the Na+ contents on the structure, surface components and electrochemical performance are studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. The XRD data indicate that the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 samples evolve from a sole layered structure (0≤x≤0.02) to a mixture of Na+-contained layered structure (0.02&lt;x≤0.1), which would transform into the single layered structure after the initial charge and discharge process. XPS data demonstrate that some of the Na+ ions could be reversibly de-/re-intercalated for the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials. An electrochemical test reveals that a small amount of Na+ (x≤0.02) in the Li1.2−xNaxNi0.13Co0.13Mn0.54O2 materials can significantly increase the rate capacity, yet the capacity retention becomes worse. We also find that the capacity retention increases with the Na+ contents. •A small amount of Na+ can significantly increase the initial discharge capacity.•Some of the Na+ ions could be reversibly de-/re-intercalated from the electrodes.•The structure evolves from a solely layered structure to a mixture of layered structure.•It could explain how the sodium species impact on the electrochemical performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.04.047</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-10, Vol.240, p.530-535
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1762138890
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cathode material
Cathodes
Charge
Diffraction
Direct energy conversion and energy accumulation
Discharge
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Layered lithium-excess
Lithium-ion batteries
Materials
Sodium-ions content
Sole
Solid solution
Transforms
X-ray photoelectron spectroscopy
X-rays
title Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Na+%20contents%20on%20electrochemical%20properties%20of%20Li1.2Ni0.13Co0.13Mn0.54O2%20cathode%20materials&rft.jtitle=Journal%20of%20power%20sources&rft.au=Qiu,%20Bao&rft.date=2013-10-15&rft.volume=240&rft.spage=530&rft.epage=535&rft.pages=530-535&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.04.047&rft_dat=%3Cproquest_cross%3E1505346313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505346313&rft_id=info:pmid/&rft_els_id=S0378775313006459&rfr_iscdi=true