Stress intensity factors of double cantilever nanobeams via gradient elasticity theory

•Double cantilever nanobeam model via the gradient elasticity theory is presented.•Stress intensity factors are obtained and exhibit size effects.•Stress intensity factors are reduced if the size effect is considered.•Fracture toughness is enhanced for nanobeams compared to large scale beams. Growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2013-06, Vol.105, p.58-64
Hauptverfasser: Zhang, H., Li, X.F., Tang, G.J., Shen, Z.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 58
container_title Engineering fracture mechanics
container_volume 105
creator Zhang, H.
Li, X.F.
Tang, G.J.
Shen, Z.B.
description •Double cantilever nanobeam model via the gradient elasticity theory is presented.•Stress intensity factors are obtained and exhibit size effects.•Stress intensity factors are reduced if the size effect is considered.•Fracture toughness is enhanced for nanobeams compared to large scale beams. Growth of crack modeled as double cantilever beam at nanoscale is studied. Using the gradient elasticity theory, the energy of nanocantilevers is calculated. The energy release rate and stress intensity factor of double cantilever nanobeams are obtained. Results indicate that the energy release rates and stress intensity factors exhibit pronounced size effects if the thickness of the nanobeam falls in the same order of the characteristic length. The fracture toughness of the nanostructures is apparently enhanced. The energy release rates and stress intensity factors have little size-dependence if the thickness of the nanobeam is greater much than the characteristic length.
doi_str_mv 10.1016/j.engfracmech.2013.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762132959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794413001070</els_id><sourcerecordid>1762132959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-2a2326cb7898224a115e1aa86179e902a1ec254e6544d98a900110e81fef24513</originalsourceid><addsrcrecordid>eNqNkEFrGzEQhUVIIE6a_6DeellXI2lX0rGYpikEckjSqxhrZxOZ9SqVZIP_fde4h9wSeDCHee_B-xj7CmIJArrvmyVNL0PGsKXwupQC1FLMEu0ZW4A1qjEK2nO2EPOnMU7rS3ZVykYIYTorFuzPY81UCo9TpanEeuADhppy4WngfdqtR-IBpxpH2lPmE05pTbgtfB-Rv2TsI02V04ilxnCM11dK-fCFXQw4Frr5f6_Z8-3Pp9Vdc__w6_fqx30TlDW1kSiV7MLaWGel1AjQEiDaDowjJyQCBdlq6lqte2fRzTNAkIWBBqlbUNfs26n3Lae_OyrVb2MJNI44UdoVD6aToKRr3cdWZWSnrNbHVneyhpxKyTT4txy3mA8ehD9i9xv_Drs_Yvdilmjn7OqUpXn2PlL2JcyMAvUxU6i-T_ETLf8ADwSRWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372638441</pqid></control><display><type>article</type><title>Stress intensity factors of double cantilever nanobeams via gradient elasticity theory</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, H. ; Li, X.F. ; Tang, G.J. ; Shen, Z.B.</creator><creatorcontrib>Zhang, H. ; Li, X.F. ; Tang, G.J. ; Shen, Z.B.</creatorcontrib><description>•Double cantilever nanobeam model via the gradient elasticity theory is presented.•Stress intensity factors are obtained and exhibit size effects.•Stress intensity factors are reduced if the size effect is considered.•Fracture toughness is enhanced for nanobeams compared to large scale beams. Growth of crack modeled as double cantilever beam at nanoscale is studied. Using the gradient elasticity theory, the energy of nanocantilevers is calculated. The energy release rate and stress intensity factor of double cantilever nanobeams are obtained. Results indicate that the energy release rates and stress intensity factors exhibit pronounced size effects if the thickness of the nanobeam falls in the same order of the characteristic length. The fracture toughness of the nanostructures is apparently enhanced. The energy release rates and stress intensity factors have little size-dependence if the thickness of the nanobeam is greater much than the characteristic length.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2013.03.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Double cantilever beam ; Elasticity ; Energy release rate ; Fracture mechanics ; Fracture toughness ; Gradient elasticity ; Nanocomposites ; Nanomaterials ; Nanoscale crack ; Nanostructure ; Stress intensity factor</subject><ispartof>Engineering fracture mechanics, 2013-06, Vol.105, p.58-64</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-2a2326cb7898224a115e1aa86179e902a1ec254e6544d98a900110e81fef24513</citedby><cites>FETCH-LOGICAL-c387t-2a2326cb7898224a115e1aa86179e902a1ec254e6544d98a900110e81fef24513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2013.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Tang, G.J.</creatorcontrib><creatorcontrib>Shen, Z.B.</creatorcontrib><title>Stress intensity factors of double cantilever nanobeams via gradient elasticity theory</title><title>Engineering fracture mechanics</title><description>•Double cantilever nanobeam model via the gradient elasticity theory is presented.•Stress intensity factors are obtained and exhibit size effects.•Stress intensity factors are reduced if the size effect is considered.•Fracture toughness is enhanced for nanobeams compared to large scale beams. Growth of crack modeled as double cantilever beam at nanoscale is studied. Using the gradient elasticity theory, the energy of nanocantilevers is calculated. The energy release rate and stress intensity factor of double cantilever nanobeams are obtained. Results indicate that the energy release rates and stress intensity factors exhibit pronounced size effects if the thickness of the nanobeam falls in the same order of the characteristic length. The fracture toughness of the nanostructures is apparently enhanced. The energy release rates and stress intensity factors have little size-dependence if the thickness of the nanobeam is greater much than the characteristic length.</description><subject>Double cantilever beam</subject><subject>Elasticity</subject><subject>Energy release rate</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Gradient elasticity</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale crack</subject><subject>Nanostructure</subject><subject>Stress intensity factor</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEFrGzEQhUVIIE6a_6DeellXI2lX0rGYpikEckjSqxhrZxOZ9SqVZIP_fde4h9wSeDCHee_B-xj7CmIJArrvmyVNL0PGsKXwupQC1FLMEu0ZW4A1qjEK2nO2EPOnMU7rS3ZVykYIYTorFuzPY81UCo9TpanEeuADhppy4WngfdqtR-IBpxpH2lPmE05pTbgtfB-Rv2TsI02V04ilxnCM11dK-fCFXQw4Frr5f6_Z8-3Pp9Vdc__w6_fqx30TlDW1kSiV7MLaWGel1AjQEiDaDowjJyQCBdlq6lqte2fRzTNAkIWBBqlbUNfs26n3Lae_OyrVb2MJNI44UdoVD6aToKRr3cdWZWSnrNbHVneyhpxKyTT4txy3mA8ehD9i9xv_Drs_Yvdilmjn7OqUpXn2PlL2JcyMAvUxU6i-T_ETLf8ADwSRWg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Zhang, H.</creator><creator>Li, X.F.</creator><creator>Tang, G.J.</creator><creator>Shen, Z.B.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201306</creationdate><title>Stress intensity factors of double cantilever nanobeams via gradient elasticity theory</title><author>Zhang, H. ; Li, X.F. ; Tang, G.J. ; Shen, Z.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-2a2326cb7898224a115e1aa86179e902a1ec254e6544d98a900110e81fef24513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Double cantilever beam</topic><topic>Elasticity</topic><topic>Energy release rate</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Gradient elasticity</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale crack</topic><topic>Nanostructure</topic><topic>Stress intensity factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, H.</creatorcontrib><creatorcontrib>Li, X.F.</creatorcontrib><creatorcontrib>Tang, G.J.</creatorcontrib><creatorcontrib>Shen, Z.B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, H.</au><au>Li, X.F.</au><au>Tang, G.J.</au><au>Shen, Z.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress intensity factors of double cantilever nanobeams via gradient elasticity theory</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2013-06</date><risdate>2013</risdate><volume>105</volume><spage>58</spage><epage>64</epage><pages>58-64</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Double cantilever nanobeam model via the gradient elasticity theory is presented.•Stress intensity factors are obtained and exhibit size effects.•Stress intensity factors are reduced if the size effect is considered.•Fracture toughness is enhanced for nanobeams compared to large scale beams. Growth of crack modeled as double cantilever beam at nanoscale is studied. Using the gradient elasticity theory, the energy of nanocantilevers is calculated. The energy release rate and stress intensity factor of double cantilever nanobeams are obtained. Results indicate that the energy release rates and stress intensity factors exhibit pronounced size effects if the thickness of the nanobeam falls in the same order of the characteristic length. The fracture toughness of the nanostructures is apparently enhanced. The energy release rates and stress intensity factors have little size-dependence if the thickness of the nanobeam is greater much than the characteristic length.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2013.03.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2013-06, Vol.105, p.58-64
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_1762132959
source ScienceDirect Journals (5 years ago - present)
subjects Double cantilever beam
Elasticity
Energy release rate
Fracture mechanics
Fracture toughness
Gradient elasticity
Nanocomposites
Nanomaterials
Nanoscale crack
Nanostructure
Stress intensity factor
title Stress intensity factors of double cantilever nanobeams via gradient elasticity theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20intensity%20factors%20of%20double%20cantilever%20nanobeams%20via%20gradient%20elasticity%20theory&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Zhang,%20H.&rft.date=2013-06&rft.volume=105&rft.spage=58&rft.epage=64&rft.pages=58-64&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2013.03.005&rft_dat=%3Cproquest_cross%3E1762132959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372638441&rft_id=info:pmid/&rft_els_id=S0013794413001070&rfr_iscdi=true