Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite

Highly precise and accurate ion microprobe analyses of oxygen three-isotope ratios in chondrules from the Acfer 094, one of the most primitive carbonaceous chondrites, show that chondrules preserve evidence for oxygen isotope heterogeneity in chondrule-forming regions of the solar nebula. Identical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2012-08, Vol.90, p.242-264
Hauptverfasser: Ushikubo, Takayuki, Kimura, Makoto, Kita, Noriko T., Valley, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 242
container_title Geochimica et cosmochimica acta
container_volume 90
creator Ushikubo, Takayuki
Kimura, Makoto
Kita, Noriko T.
Valley, John W.
description Highly precise and accurate ion microprobe analyses of oxygen three-isotope ratios in chondrules from the Acfer 094, one of the most primitive carbonaceous chondrites, show that chondrules preserve evidence for oxygen isotope heterogeneity in chondrule-forming regions of the solar nebula. Identical Δ17O values in most minerals and glass within each chondrule indicate that the oxygen isotope ratio in chondrule melt did not change during or after crystallization. Nearly half of the chondrules studied contain small amounts of olivine grains that have an oxygen isotope anomaly relative to other minerals and glass in the same chondrule. Most chondrules in Acfer 094 can be classified into two oxygen isotope groups (Δ17O∼−2‰ and Δ17O∼−5‰) indicating that the final melting of chondrules occurred within two distinct oxygen isotope reservoirs, probably representing the local protoplanetary disk immediately before planetesimal formation. One of these reservoirs (Δ17O∼−2‰) is observed from chondrules in other carbonaceous chondrites and from crystalline silicates in comet Wild 2, suggesting that crystalline silicates formed in an oxygen isotope reservoir of Δ17O∼−2‰ were widely distributed in the outer asteroid belt and throughout the outer solar nebula. Oxygen three-isotope ratios of minerals in chondrules from Acfer 094 are distributed along a newly defined Primitive Chondrule Minerals (PCM) line, which has slope ∼1 [δ17O=(0.987±0.013)×δ18O−(2.70±0.11)] and intersects the terrestrial fractionation line at δ18O=5.8±0.4‰. These data are distinct from, and plot between, the CCAM, and Young and Russell lines. The PCM line is interpreted to represent the mixing trend of extreme oxygen isotope reservoirs in the early solar system that were the primary oxygen isotope reservoir of solids that accreted to form planets including the Earth.
doi_str_mv 10.1016/j.gca.2012.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762132231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703712002852</els_id><sourcerecordid>1762132231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-774508548eab0ae4a819d5765e8ada869b0a4242db56f11d6f4176e03459ea613</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpodu0P6Cn6piLnZH1ZZNTCGkbCKTQ5ixmpfFGi2NtJG9I_n21bM4hJyHpeYfhfRj7LqAVIMzZtt14bDsQXQu6BQEf2Er0tmsGLeVHtoIKNRak_cy-lLIFAKs1rFj5k-NDyiHixNPzy4ZmHkta0o54pkL5KcVceBr5ck-8pAkzn2m9n7B--5qjwOPM_X2aQ95PVA63Cz9S5jAo7jGv04ye0r68QnGhr-zTiFOhb6_nCbv7efXv8ndzc_vr-vLipkFlzdJYqzT0WvWEa0BS2IshaGs09RiwN0N9VZ3qwlqbUYhgRiWsIZBKD4RGyBN2epy7y-lxT2VxD7F4miacDwu5SndCdp18BwqyN8IMvayoOKI-p1IyjW5XK8T8UiF3cOG2rrpwBxcOtKsuaubHMTNicrjJsbi7vxXQVYtQAkwlzo8E1UKeImVXfKTZU4i16MWFFN-Y_x9nbJrM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038616983</pqid></control><display><type>article</type><title>Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite</title><source>Elsevier ScienceDirect Journals</source><creator>Ushikubo, Takayuki ; Kimura, Makoto ; Kita, Noriko T. ; Valley, John W.</creator><creatorcontrib>Ushikubo, Takayuki ; Kimura, Makoto ; Kita, Noriko T. ; Valley, John W.</creatorcontrib><description>Highly precise and accurate ion microprobe analyses of oxygen three-isotope ratios in chondrules from the Acfer 094, one of the most primitive carbonaceous chondrites, show that chondrules preserve evidence for oxygen isotope heterogeneity in chondrule-forming regions of the solar nebula. Identical Δ17O values in most minerals and glass within each chondrule indicate that the oxygen isotope ratio in chondrule melt did not change during or after crystallization. Nearly half of the chondrules studied contain small amounts of olivine grains that have an oxygen isotope anomaly relative to other minerals and glass in the same chondrule. Most chondrules in Acfer 094 can be classified into two oxygen isotope groups (Δ17O∼−2‰ and Δ17O∼−5‰) indicating that the final melting of chondrules occurred within two distinct oxygen isotope reservoirs, probably representing the local protoplanetary disk immediately before planetesimal formation. One of these reservoirs (Δ17O∼−2‰) is observed from chondrules in other carbonaceous chondrites and from crystalline silicates in comet Wild 2, suggesting that crystalline silicates formed in an oxygen isotope reservoir of Δ17O∼−2‰ were widely distributed in the outer asteroid belt and throughout the outer solar nebula. Oxygen three-isotope ratios of minerals in chondrules from Acfer 094 are distributed along a newly defined Primitive Chondrule Minerals (PCM) line, which has slope ∼1 [δ17O=(0.987±0.013)×δ18O−(2.70±0.11)] and intersects the terrestrial fractionation line at δ18O=5.8±0.4‰. These data are distinct from, and plot between, the CCAM, and Young and Russell lines. The PCM line is interpreted to represent the mixing trend of extreme oxygen isotope reservoirs in the early solar system that were the primary oxygen isotope reservoir of solids that accreted to form planets including the Earth.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2012.05.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbonaceous chondrites ; Chondrule ; Crystal structure ; crystallization ; fractionation ; Glass ; isotopes ; melting ; Minerals ; mixing ; oxygen ; Oxygen isotopes ; Reservoirs ; Silicates</subject><ispartof>Geochimica et cosmochimica acta, 2012-08, Vol.90, p.242-264</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-774508548eab0ae4a819d5765e8ada869b0a4242db56f11d6f4176e03459ea613</citedby><cites>FETCH-LOGICAL-a476t-774508548eab0ae4a819d5765e8ada869b0a4242db56f11d6f4176e03459ea613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2012.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ushikubo, Takayuki</creatorcontrib><creatorcontrib>Kimura, Makoto</creatorcontrib><creatorcontrib>Kita, Noriko T.</creatorcontrib><creatorcontrib>Valley, John W.</creatorcontrib><title>Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite</title><title>Geochimica et cosmochimica acta</title><description>Highly precise and accurate ion microprobe analyses of oxygen three-isotope ratios in chondrules from the Acfer 094, one of the most primitive carbonaceous chondrites, show that chondrules preserve evidence for oxygen isotope heterogeneity in chondrule-forming regions of the solar nebula. Identical Δ17O values in most minerals and glass within each chondrule indicate that the oxygen isotope ratio in chondrule melt did not change during or after crystallization. Nearly half of the chondrules studied contain small amounts of olivine grains that have an oxygen isotope anomaly relative to other minerals and glass in the same chondrule. Most chondrules in Acfer 094 can be classified into two oxygen isotope groups (Δ17O∼−2‰ and Δ17O∼−5‰) indicating that the final melting of chondrules occurred within two distinct oxygen isotope reservoirs, probably representing the local protoplanetary disk immediately before planetesimal formation. One of these reservoirs (Δ17O∼−2‰) is observed from chondrules in other carbonaceous chondrites and from crystalline silicates in comet Wild 2, suggesting that crystalline silicates formed in an oxygen isotope reservoir of Δ17O∼−2‰ were widely distributed in the outer asteroid belt and throughout the outer solar nebula. Oxygen three-isotope ratios of minerals in chondrules from Acfer 094 are distributed along a newly defined Primitive Chondrule Minerals (PCM) line, which has slope ∼1 [δ17O=(0.987±0.013)×δ18O−(2.70±0.11)] and intersects the terrestrial fractionation line at δ18O=5.8±0.4‰. These data are distinct from, and plot between, the CCAM, and Young and Russell lines. The PCM line is interpreted to represent the mixing trend of extreme oxygen isotope reservoirs in the early solar system that were the primary oxygen isotope reservoir of solids that accreted to form planets including the Earth.</description><subject>Carbonaceous chondrites</subject><subject>Chondrule</subject><subject>Crystal structure</subject><subject>crystallization</subject><subject>fractionation</subject><subject>Glass</subject><subject>isotopes</subject><subject>melting</subject><subject>Minerals</subject><subject>mixing</subject><subject>oxygen</subject><subject>Oxygen isotopes</subject><subject>Reservoirs</subject><subject>Silicates</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVpodu0P6Cn6piLnZH1ZZNTCGkbCKTQ5ixmpfFGi2NtJG9I_n21bM4hJyHpeYfhfRj7LqAVIMzZtt14bDsQXQu6BQEf2Er0tmsGLeVHtoIKNRak_cy-lLIFAKs1rFj5k-NDyiHixNPzy4ZmHkta0o54pkL5KcVceBr5ck-8pAkzn2m9n7B--5qjwOPM_X2aQ95PVA63Cz9S5jAo7jGv04ye0r68QnGhr-zTiFOhb6_nCbv7efXv8ndzc_vr-vLipkFlzdJYqzT0WvWEa0BS2IshaGs09RiwN0N9VZ3qwlqbUYhgRiWsIZBKD4RGyBN2epy7y-lxT2VxD7F4miacDwu5SndCdp18BwqyN8IMvayoOKI-p1IyjW5XK8T8UiF3cOG2rrpwBxcOtKsuaubHMTNicrjJsbi7vxXQVYtQAkwlzo8E1UKeImVXfKTZU4i16MWFFN-Y_x9nbJrM</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Ushikubo, Takayuki</creator><creator>Kimura, Makoto</creator><creator>Kita, Noriko T.</creator><creator>Valley, John W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120801</creationdate><title>Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite</title><author>Ushikubo, Takayuki ; Kimura, Makoto ; Kita, Noriko T. ; Valley, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-774508548eab0ae4a819d5765e8ada869b0a4242db56f11d6f4176e03459ea613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Carbonaceous chondrites</topic><topic>Chondrule</topic><topic>Crystal structure</topic><topic>crystallization</topic><topic>fractionation</topic><topic>Glass</topic><topic>isotopes</topic><topic>melting</topic><topic>Minerals</topic><topic>mixing</topic><topic>oxygen</topic><topic>Oxygen isotopes</topic><topic>Reservoirs</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ushikubo, Takayuki</creatorcontrib><creatorcontrib>Kimura, Makoto</creatorcontrib><creatorcontrib>Kita, Noriko T.</creatorcontrib><creatorcontrib>Valley, John W.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ushikubo, Takayuki</au><au>Kimura, Makoto</au><au>Kita, Noriko T.</au><au>Valley, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>90</volume><spage>242</spage><epage>264</epage><pages>242-264</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Highly precise and accurate ion microprobe analyses of oxygen three-isotope ratios in chondrules from the Acfer 094, one of the most primitive carbonaceous chondrites, show that chondrules preserve evidence for oxygen isotope heterogeneity in chondrule-forming regions of the solar nebula. Identical Δ17O values in most minerals and glass within each chondrule indicate that the oxygen isotope ratio in chondrule melt did not change during or after crystallization. Nearly half of the chondrules studied contain small amounts of olivine grains that have an oxygen isotope anomaly relative to other minerals and glass in the same chondrule. Most chondrules in Acfer 094 can be classified into two oxygen isotope groups (Δ17O∼−2‰ and Δ17O∼−5‰) indicating that the final melting of chondrules occurred within two distinct oxygen isotope reservoirs, probably representing the local protoplanetary disk immediately before planetesimal formation. One of these reservoirs (Δ17O∼−2‰) is observed from chondrules in other carbonaceous chondrites and from crystalline silicates in comet Wild 2, suggesting that crystalline silicates formed in an oxygen isotope reservoir of Δ17O∼−2‰ were widely distributed in the outer asteroid belt and throughout the outer solar nebula. Oxygen three-isotope ratios of minerals in chondrules from Acfer 094 are distributed along a newly defined Primitive Chondrule Minerals (PCM) line, which has slope ∼1 [δ17O=(0.987±0.013)×δ18O−(2.70±0.11)] and intersects the terrestrial fractionation line at δ18O=5.8±0.4‰. These data are distinct from, and plot between, the CCAM, and Young and Russell lines. The PCM line is interpreted to represent the mixing trend of extreme oxygen isotope reservoirs in the early solar system that were the primary oxygen isotope reservoir of solids that accreted to form planets including the Earth.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2012.05.010</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2012-08, Vol.90, p.242-264
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_1762132231
source Elsevier ScienceDirect Journals
subjects Carbonaceous chondrites
Chondrule
Crystal structure
crystallization
fractionation
Glass
isotopes
melting
Minerals
mixing
oxygen
Oxygen isotopes
Reservoirs
Silicates
title Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primordial%20oxygen%20isotope%20reservoirs%20of%20the%20solar%20nebula%20recorded%20in%20chondrules%20in%20Acfer%20094%20carbonaceous%20chondrite&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Ushikubo,%20Takayuki&rft.date=2012-08-01&rft.volume=90&rft.spage=242&rft.epage=264&rft.pages=242-264&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2012.05.010&rft_dat=%3Cproquest_cross%3E1762132231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038616983&rft_id=info:pmid/&rft_els_id=S0016703712002852&rfr_iscdi=true