Multi-step TIMS and CA-TIMS monazite U–Pb geochronology

Multi-step chemical abrasion thermal ionization mass spectrometry (CA-TIMS) methods were developed for monazite using six samples that vary in composition and age—Amelia, Jefferson County, Burke, Elk Mountain, 554 and Madagascar. To evaluate whether the multi-step CA-TIMS approach reveals complexiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical geology 2012-06, Vol.312-313, p.58-73
Hauptverfasser: Peterman, Emily M., Mattinson, James M., Hacker, Bradley R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 58
container_title Chemical geology
container_volume 312-313
creator Peterman, Emily M.
Mattinson, James M.
Hacker, Bradley R.
description Multi-step chemical abrasion thermal ionization mass spectrometry (CA-TIMS) methods were developed for monazite using six samples that vary in composition and age—Amelia, Jefferson County, Burke, Elk Mountain, 554 and Madagascar. To evaluate whether the multi-step CA-TIMS approach reveals complexities in either age or composition that might be masked by single-step analysis, this study presents a side-by-side comparison of monazite samples dated via multi-step TIMS (not annealed) and CA-TIMS (annealed), and measurement of rare earth element ratios for each dissolution step. The data demonstrate three important contributions. First, annealing reduces solubility—after one partial dissolution step, not-annealed fractions were 3.3–4.1 times more digested than the annealed fractions. The difference in solubility suggests that monazite does not fully self-anneal at low temperatures. Second, multi-step TIMS analyses yielded high-precision U–Pb plateau ages for the Burke and Amelia monazites; CA-TIMS analyses yielded high-precision U–Pb plateau ages for Madagascar and Amelia monazites. Jefferson County, Elk Mountain and 554 yielded more complex results and no U–Pb plateau ages. Third, chemical analysis of partial-dissolution steps reveals heterogeneous age and compositional data for annealed samples. Because not-annealed samples yielded more consistent age and compositional data, high-temperature annealing is not recommended for monazite. Instead, optimal TIMS results are provided by slow, partial dissolution of monazite in weak acid. ► High temperature annealing reduces the solubility of monazite. ► Multi-step CA-TIMS approach yields high-precision plateau ages. ► Chemical analysis shows complex age and composition data for annealed samples. ► Not-annealed samples yield more consistent age and compositional data.
doi_str_mv 10.1016/j.chemgeo.2012.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762127060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009254112001726</els_id><sourcerecordid>1031328488</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-8b7f2255b96ff6524ae3522eab67aefbfcc76eafde1dbe96c048bb2d4366b19c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOF4eQezSTWuSNmm7Ehm8DMygMM46JOnJmKFtxqQj6Mp38A19EqN17-qcA99_fvgQOiM4I5jwy02mn6Fbg8soJjTDRYYx30MTUpU05VXO99EEY1ynlBXkEB2FsIknyRmboHqxawebhgG2ydNssUxk3yTT6_R371wv3-0Ayerr4_NRJbFCP3vXu9at307QgZFtgNO_eYxWtzdP0_t0_nA3m17PU1lQOqSVKg2ljKmaG8MZLSTkjFKQipcSjDJalxykaYA0CmqucVEpRZsi51yRWufH6GL8u_XuZQdhEJ0NGtpW9uB2QZCSU0JLzPH_KM5JTquiqiLKRlR7F4IHI7bedtK_RUj8WBUb8WdV_FgVuBDRasydjzkjnZBrb4NYLSPAolFe1pxG4mokIEp5teBF0BZ6DY31oAfROPtPxzcTuYuW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031328488</pqid></control><display><type>article</type><title>Multi-step TIMS and CA-TIMS monazite U–Pb geochronology</title><source>Elsevier ScienceDirect Journals</source><creator>Peterman, Emily M. ; Mattinson, James M. ; Hacker, Bradley R.</creator><creatorcontrib>Peterman, Emily M. ; Mattinson, James M. ; Hacker, Bradley R.</creatorcontrib><description>Multi-step chemical abrasion thermal ionization mass spectrometry (CA-TIMS) methods were developed for monazite using six samples that vary in composition and age—Amelia, Jefferson County, Burke, Elk Mountain, 554 and Madagascar. To evaluate whether the multi-step CA-TIMS approach reveals complexities in either age or composition that might be masked by single-step analysis, this study presents a side-by-side comparison of monazite samples dated via multi-step TIMS (not annealed) and CA-TIMS (annealed), and measurement of rare earth element ratios for each dissolution step. The data demonstrate three important contributions. First, annealing reduces solubility—after one partial dissolution step, not-annealed fractions were 3.3–4.1 times more digested than the annealed fractions. The difference in solubility suggests that monazite does not fully self-anneal at low temperatures. Second, multi-step TIMS analyses yielded high-precision U–Pb plateau ages for the Burke and Amelia monazites; CA-TIMS analyses yielded high-precision U–Pb plateau ages for Madagascar and Amelia monazites. Jefferson County, Elk Mountain and 554 yielded more complex results and no U–Pb plateau ages. Third, chemical analysis of partial-dissolution steps reveals heterogeneous age and compositional data for annealed samples. Because not-annealed samples yielded more consistent age and compositional data, high-temperature annealing is not recommended for monazite. Instead, optimal TIMS results are provided by slow, partial dissolution of monazite in weak acid. ► High temperature annealing reduces the solubility of monazite. ► Multi-step CA-TIMS approach yields high-precision plateau ages. ► Chemical analysis shows complex age and composition data for annealed samples. ► Not-annealed samples yield more consistent age and compositional data.</description><identifier>ISSN: 0009-2541</identifier><identifier>EISSN: 1872-6836</identifier><identifier>DOI: 10.1016/j.chemgeo.2012.04.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Abrasion ; Abrasion resistance ; Age ; Annealing ; Chemical abrasion ; chemical analysis ; Dissolution ; Geochronology ; ionization ; mass spectrometry ; Monazite ; Mountains ; plateaus ; rare earth elements ; solubility ; temperature ; U–Pb</subject><ispartof>Chemical geology, 2012-06, Vol.312-313, p.58-73</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-8b7f2255b96ff6524ae3522eab67aefbfcc76eafde1dbe96c048bb2d4366b19c3</citedby><cites>FETCH-LOGICAL-a422t-8b7f2255b96ff6524ae3522eab67aefbfcc76eafde1dbe96c048bb2d4366b19c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009254112001726$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Peterman, Emily M.</creatorcontrib><creatorcontrib>Mattinson, James M.</creatorcontrib><creatorcontrib>Hacker, Bradley R.</creatorcontrib><title>Multi-step TIMS and CA-TIMS monazite U–Pb geochronology</title><title>Chemical geology</title><description>Multi-step chemical abrasion thermal ionization mass spectrometry (CA-TIMS) methods were developed for monazite using six samples that vary in composition and age—Amelia, Jefferson County, Burke, Elk Mountain, 554 and Madagascar. To evaluate whether the multi-step CA-TIMS approach reveals complexities in either age or composition that might be masked by single-step analysis, this study presents a side-by-side comparison of monazite samples dated via multi-step TIMS (not annealed) and CA-TIMS (annealed), and measurement of rare earth element ratios for each dissolution step. The data demonstrate three important contributions. First, annealing reduces solubility—after one partial dissolution step, not-annealed fractions were 3.3–4.1 times more digested than the annealed fractions. The difference in solubility suggests that monazite does not fully self-anneal at low temperatures. Second, multi-step TIMS analyses yielded high-precision U–Pb plateau ages for the Burke and Amelia monazites; CA-TIMS analyses yielded high-precision U–Pb plateau ages for Madagascar and Amelia monazites. Jefferson County, Elk Mountain and 554 yielded more complex results and no U–Pb plateau ages. Third, chemical analysis of partial-dissolution steps reveals heterogeneous age and compositional data for annealed samples. Because not-annealed samples yielded more consistent age and compositional data, high-temperature annealing is not recommended for monazite. Instead, optimal TIMS results are provided by slow, partial dissolution of monazite in weak acid. ► High temperature annealing reduces the solubility of monazite. ► Multi-step CA-TIMS approach yields high-precision plateau ages. ► Chemical analysis shows complex age and composition data for annealed samples. ► Not-annealed samples yield more consistent age and compositional data.</description><subject>Abrasion</subject><subject>Abrasion resistance</subject><subject>Age</subject><subject>Annealing</subject><subject>Chemical abrasion</subject><subject>chemical analysis</subject><subject>Dissolution</subject><subject>Geochronology</subject><subject>ionization</subject><subject>mass spectrometry</subject><subject>Monazite</subject><subject>Mountains</subject><subject>plateaus</subject><subject>rare earth elements</subject><subject>solubility</subject><subject>temperature</subject><subject>U–Pb</subject><issn>0009-2541</issn><issn>1872-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOF4eQezSTWuSNmm7Ehm8DMygMM46JOnJmKFtxqQj6Mp38A19EqN17-qcA99_fvgQOiM4I5jwy02mn6Fbg8soJjTDRYYx30MTUpU05VXO99EEY1ynlBXkEB2FsIknyRmboHqxawebhgG2ydNssUxk3yTT6_R371wv3-0Ayerr4_NRJbFCP3vXu9at307QgZFtgNO_eYxWtzdP0_t0_nA3m17PU1lQOqSVKg2ljKmaG8MZLSTkjFKQipcSjDJalxykaYA0CmqucVEpRZsi51yRWufH6GL8u_XuZQdhEJ0NGtpW9uB2QZCSU0JLzPH_KM5JTquiqiLKRlR7F4IHI7bedtK_RUj8WBUb8WdV_FgVuBDRasydjzkjnZBrb4NYLSPAolFe1pxG4mokIEp5teBF0BZ6DY31oAfROPtPxzcTuYuW</recordid><startdate>20120618</startdate><enddate>20120618</enddate><creator>Peterman, Emily M.</creator><creator>Mattinson, James M.</creator><creator>Hacker, Bradley R.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20120618</creationdate><title>Multi-step TIMS and CA-TIMS monazite U–Pb geochronology</title><author>Peterman, Emily M. ; Mattinson, James M. ; Hacker, Bradley R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-8b7f2255b96ff6524ae3522eab67aefbfcc76eafde1dbe96c048bb2d4366b19c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abrasion</topic><topic>Abrasion resistance</topic><topic>Age</topic><topic>Annealing</topic><topic>Chemical abrasion</topic><topic>chemical analysis</topic><topic>Dissolution</topic><topic>Geochronology</topic><topic>ionization</topic><topic>mass spectrometry</topic><topic>Monazite</topic><topic>Mountains</topic><topic>plateaus</topic><topic>rare earth elements</topic><topic>solubility</topic><topic>temperature</topic><topic>U–Pb</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peterman, Emily M.</creatorcontrib><creatorcontrib>Mattinson, James M.</creatorcontrib><creatorcontrib>Hacker, Bradley R.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peterman, Emily M.</au><au>Mattinson, James M.</au><au>Hacker, Bradley R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-step TIMS and CA-TIMS monazite U–Pb geochronology</atitle><jtitle>Chemical geology</jtitle><date>2012-06-18</date><risdate>2012</risdate><volume>312-313</volume><spage>58</spage><epage>73</epage><pages>58-73</pages><issn>0009-2541</issn><eissn>1872-6836</eissn><abstract>Multi-step chemical abrasion thermal ionization mass spectrometry (CA-TIMS) methods were developed for monazite using six samples that vary in composition and age—Amelia, Jefferson County, Burke, Elk Mountain, 554 and Madagascar. To evaluate whether the multi-step CA-TIMS approach reveals complexities in either age or composition that might be masked by single-step analysis, this study presents a side-by-side comparison of monazite samples dated via multi-step TIMS (not annealed) and CA-TIMS (annealed), and measurement of rare earth element ratios for each dissolution step. The data demonstrate three important contributions. First, annealing reduces solubility—after one partial dissolution step, not-annealed fractions were 3.3–4.1 times more digested than the annealed fractions. The difference in solubility suggests that monazite does not fully self-anneal at low temperatures. Second, multi-step TIMS analyses yielded high-precision U–Pb plateau ages for the Burke and Amelia monazites; CA-TIMS analyses yielded high-precision U–Pb plateau ages for Madagascar and Amelia monazites. Jefferson County, Elk Mountain and 554 yielded more complex results and no U–Pb plateau ages. Third, chemical analysis of partial-dissolution steps reveals heterogeneous age and compositional data for annealed samples. Because not-annealed samples yielded more consistent age and compositional data, high-temperature annealing is not recommended for monazite. Instead, optimal TIMS results are provided by slow, partial dissolution of monazite in weak acid. ► High temperature annealing reduces the solubility of monazite. ► Multi-step CA-TIMS approach yields high-precision plateau ages. ► Chemical analysis shows complex age and composition data for annealed samples. ► Not-annealed samples yield more consistent age and compositional data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemgeo.2012.04.006</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2541
ispartof Chemical geology, 2012-06, Vol.312-313, p.58-73
issn 0009-2541
1872-6836
language eng
recordid cdi_proquest_miscellaneous_1762127060
source Elsevier ScienceDirect Journals
subjects Abrasion
Abrasion resistance
Age
Annealing
Chemical abrasion
chemical analysis
Dissolution
Geochronology
ionization
mass spectrometry
Monazite
Mountains
plateaus
rare earth elements
solubility
temperature
U–Pb
title Multi-step TIMS and CA-TIMS monazite U–Pb geochronology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-step%20TIMS%20and%20CA-TIMS%20monazite%20U%E2%80%93Pb%20geochronology&rft.jtitle=Chemical%20geology&rft.au=Peterman,%20Emily%20M.&rft.date=2012-06-18&rft.volume=312-313&rft.spage=58&rft.epage=73&rft.pages=58-73&rft.issn=0009-2541&rft.eissn=1872-6836&rft_id=info:doi/10.1016/j.chemgeo.2012.04.006&rft_dat=%3Cproquest_cross%3E1031328488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031328488&rft_id=info:pmid/&rft_els_id=S0009254112001726&rfr_iscdi=true