Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method

Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied sciences (Asian Network for Scientific Information) 2012, Vol.12 (5), p.416-427
Hauptverfasser: Malik, F, Baharudin, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 5
container_start_page 416
container_title Journal of applied sciences (Asian Network for Scientific Information)
container_volume 12
creator Malik, F
Baharudin, B
description Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.
doi_str_mv 10.3923/jas.2012.416.427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762125917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020839618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</originalsourceid><addsrcrecordid>eNqF0bFOwzAQgOEMIFEKO6NHlhTbcZxkLBWllVohITpbZ-dSXDlJsV2kDrw7CbAzWSd_d8ufJHeMzrKKZw8HCDNOGZ8JJmeCFxfJhJWMp7nMxVVyHcKBUpHJqpgkX1usLXQEupps4OjAjNPSuog-EA0Ba7JEiCePZN6BOwcbSNN7sui7iF0kjz9k3cIeyStGb_ETHNkF2-0H4wa5siH2ew_t8N_YDttxbYvxva9vkssGXMDbv3ea7JZPb4tVunl5Xi_mm9RwLmJagqyQatZoU9C6zDUaqWVWUs1zJioQCKXB2tQN4ygMlzLXsmmYxlprYUw2Te5_7x59_3HCEFVrg0HnoMP-FBQrJGc8r1jxP6WcllklWTlQ-kuN70Pw2Kijty3484DUGEINIdQYQg0h1BAi-waUOoB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020839618</pqid></control><display><type>article</type><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Malik, F ; Baharudin, B</creator><creatorcontrib>Malik, F ; Baharudin, B</creatorcontrib><description>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</description><identifier>ISSN: 1812-5654</identifier><identifier>DOI: 10.3923/jas.2012.416.427</identifier><language>eng</language><subject>Color ; Histograms ; Mathematical analysis ; Preserves ; Retrieval ; Similarity</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2012, Vol.12 (5), p.416-427</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,4109,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Malik, F</creatorcontrib><creatorcontrib>Baharudin, B</creatorcontrib><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</description><subject>Color</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Preserves</subject><subject>Retrieval</subject><subject>Similarity</subject><issn>1812-5654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0bFOwzAQgOEMIFEKO6NHlhTbcZxkLBWllVohITpbZ-dSXDlJsV2kDrw7CbAzWSd_d8ufJHeMzrKKZw8HCDNOGZ8JJmeCFxfJhJWMp7nMxVVyHcKBUpHJqpgkX1usLXQEupps4OjAjNPSuog-EA0Ba7JEiCePZN6BOwcbSNN7sui7iF0kjz9k3cIeyStGb_ETHNkF2-0H4wa5siH2ew_t8N_YDttxbYvxva9vkssGXMDbv3ea7JZPb4tVunl5Xi_mm9RwLmJagqyQatZoU9C6zDUaqWVWUs1zJioQCKXB2tQN4ygMlzLXsmmYxlprYUw2Te5_7x59_3HCEFVrg0HnoMP-FBQrJGc8r1jxP6WcllklWTlQ-kuN70Pw2Kijty3484DUGEINIdQYQg0h1BAi-waUOoB2</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Malik, F</creator><creator>Baharudin, B</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><author>Malik, F ; Baharudin, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Color</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Preserves</topic><topic>Retrieval</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Malik, F</creatorcontrib><creatorcontrib>Baharudin, B</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, F</au><au>Baharudin, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2012</date><risdate>2012</risdate><volume>12</volume><issue>5</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>1812-5654</issn><abstract>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</abstract><doi>10.3923/jas.2012.416.427</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1812-5654
ispartof Journal of applied sciences (Asian Network for Scientific Information), 2012, Vol.12 (5), p.416-427
issn 1812-5654
language eng
recordid cdi_proquest_miscellaneous_1762125917
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert
subjects Color
Histograms
Mathematical analysis
Preserves
Retrieval
Similarity
title Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Median%20and%20Laplacian%20Filters%20based%20Feature%20Analysis%20for%20Content%20Based%20Image%20Retrieval%20Using%20Color%20Histogram%20Refinement%20Method&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Malik,%20F&rft.date=2012&rft.volume=12&rft.issue=5&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=1812-5654&rft_id=info:doi/10.3923/jas.2012.416.427&rft_dat=%3Cproquest_cross%3E1020839618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020839618&rft_id=info:pmid/&rfr_iscdi=true