Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method
Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem...
Gespeichert in:
Veröffentlicht in: | Journal of applied sciences (Asian Network for Scientific Information) 2012, Vol.12 (5), p.416-427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 5 |
container_start_page | 416 |
container_title | Journal of applied sciences (Asian Network for Scientific Information) |
container_volume | 12 |
creator | Malik, F Baharudin, B |
description | Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter. |
doi_str_mv | 10.3923/jas.2012.416.427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762125917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020839618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</originalsourceid><addsrcrecordid>eNqF0bFOwzAQgOEMIFEKO6NHlhTbcZxkLBWllVohITpbZ-dSXDlJsV2kDrw7CbAzWSd_d8ufJHeMzrKKZw8HCDNOGZ8JJmeCFxfJhJWMp7nMxVVyHcKBUpHJqpgkX1usLXQEupps4OjAjNPSuog-EA0Ba7JEiCePZN6BOwcbSNN7sui7iF0kjz9k3cIeyStGb_ETHNkF2-0H4wa5siH2ew_t8N_YDttxbYvxva9vkssGXMDbv3ea7JZPb4tVunl5Xi_mm9RwLmJagqyQatZoU9C6zDUaqWVWUs1zJioQCKXB2tQN4ygMlzLXsmmYxlprYUw2Te5_7x59_3HCEFVrg0HnoMP-FBQrJGc8r1jxP6WcllklWTlQ-kuN70Pw2Kijty3484DUGEINIdQYQg0h1BAi-waUOoB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020839618</pqid></control><display><type>article</type><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Science Alert</source><creator>Malik, F ; Baharudin, B</creator><creatorcontrib>Malik, F ; Baharudin, B</creatorcontrib><description>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</description><identifier>ISSN: 1812-5654</identifier><identifier>DOI: 10.3923/jas.2012.416.427</identifier><language>eng</language><subject>Color ; Histograms ; Mathematical analysis ; Preserves ; Retrieval ; Similarity</subject><ispartof>Journal of applied sciences (Asian Network for Scientific Information), 2012, Vol.12 (5), p.416-427</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,4109,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Malik, F</creatorcontrib><creatorcontrib>Baharudin, B</creatorcontrib><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><title>Journal of applied sciences (Asian Network for Scientific Information)</title><description>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</description><subject>Color</subject><subject>Histograms</subject><subject>Mathematical analysis</subject><subject>Preserves</subject><subject>Retrieval</subject><subject>Similarity</subject><issn>1812-5654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0bFOwzAQgOEMIFEKO6NHlhTbcZxkLBWllVohITpbZ-dSXDlJsV2kDrw7CbAzWSd_d8ufJHeMzrKKZw8HCDNOGZ8JJmeCFxfJhJWMp7nMxVVyHcKBUpHJqpgkX1usLXQEupps4OjAjNPSuog-EA0Ba7JEiCePZN6BOwcbSNN7sui7iF0kjz9k3cIeyStGb_ETHNkF2-0H4wa5siH2ew_t8N_YDttxbYvxva9vkssGXMDbv3ea7JZPb4tVunl5Xi_mm9RwLmJagqyQatZoU9C6zDUaqWVWUs1zJioQCKXB2tQN4ygMlzLXsmmYxlprYUw2Te5_7x59_3HCEFVrg0HnoMP-FBQrJGc8r1jxP6WcllklWTlQ-kuN70Pw2Kijty3484DUGEINIdQYQg0h1BAi-waUOoB2</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Malik, F</creator><creator>Baharudin, B</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</title><author>Malik, F ; Baharudin, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-8a69e0b1fbc70d85bec6b6380b25149a4ea8cedcdf12e4c2665b6ff1bedbb4cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Color</topic><topic>Histograms</topic><topic>Mathematical analysis</topic><topic>Preserves</topic><topic>Retrieval</topic><topic>Similarity</topic><toplevel>online_resources</toplevel><creatorcontrib>Malik, F</creatorcontrib><creatorcontrib>Baharudin, B</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, F</au><au>Baharudin, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method</atitle><jtitle>Journal of applied sciences (Asian Network for Scientific Information)</jtitle><date>2012</date><risdate>2012</risdate><volume>12</volume><issue>5</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>1812-5654</issn><abstract>Median and Laplacian filters are used to remove noise from images but some mount of information is also lost. Edge extraction and sharpening methods are used to restore the information lost by median and Laplacian filters. Histogram is used to extract features from filtered image but it has problem that images with diverse appearance will have the same histograms because the spatial information in image does not preserve. To preserve spatial information, we quantize histograms into bins. In each bin the statistical features are calculated using the spatial information of regions. For similarity Sum-of-Absolute Differences (SAD) is used to calculate distance between query and database images. Retrieved images are displayed according to the optimized threshold value of the percentage of maximum of distance values. Experiments on the Corel database give results which show that the statistical features of histogram using spatial information are robust in retrieval of images based on Laplacian filter.</abstract><doi>10.3923/jas.2012.416.427</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-5654 |
ispartof | Journal of applied sciences (Asian Network for Scientific Information), 2012, Vol.12 (5), p.416-427 |
issn | 1812-5654 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762125917 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Science Alert |
subjects | Color Histograms Mathematical analysis Preserves Retrieval Similarity |
title | Median and Laplacian Filters based Feature Analysis for Content Based Image Retrieval Using Color Histogram Refinement Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Median%20and%20Laplacian%20Filters%20based%20Feature%20Analysis%20for%20Content%20Based%20Image%20Retrieval%20Using%20Color%20Histogram%20Refinement%20Method&rft.jtitle=Journal%20of%20applied%20sciences%20(Asian%20Network%20for%20Scientific%20Information)&rft.au=Malik,%20F&rft.date=2012&rft.volume=12&rft.issue=5&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=1812-5654&rft_id=info:doi/10.3923/jas.2012.416.427&rft_dat=%3Cproquest_cross%3E1020839618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020839618&rft_id=info:pmid/&rfr_iscdi=true |