Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode

We use a discretization technique that combines the differential quadrature method (DQM) and the finite difference method (FDM) for the space and time, respectively, to study the dynamic behavior of a microbeam-based electrostatic microactuator. The adopted mathematical model based on the Euler— Ber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2010-08, Vol.16 (9), p.1321-1349
Hauptverfasser: Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1349
container_issue 9
container_start_page 1321
container_title Journal of vibration and control
container_volume 16
creator Najar, F.
Nayfeh, A.H.
Abdel-Rahman, E.M.
Choura, S.
El-Borgi, S.
description We use a discretization technique that combines the differential quadrature method (DQM) and the finite difference method (FDM) for the space and time, respectively, to study the dynamic behavior of a microbeam-based electrostatic microactuator. The adopted mathematical model based on the Euler— Bernoulli beam theory accounts for the system nonlinearities due to mid-plane stretching and electrostatic force. The nonlinear algebraic system obtained by the DQM—FDM is used to investigate the limit-cycle solutions of the microactuator. The stability of these solutions is ascertained using Floquet theory and/or long-time integration. The method is applied for large excitation amplitudes and large quality factors for primary and secondary resonances of the first mode in case of hardening-type and softening-type behaviors. We show that the combined DQM—FDM technique improves convergence of the dynamic solutions. We identify primary, subharmonic, and superharmonic resonances of the microactuator. We observe the occurrence of dynamic pull-in due to subharmonic and superharmonic resonances as the excitation amplitude is increased. Simultaneous resonances of the first and higher modes are identified for large orbits in both primary and secondary resonances.
doi_str_mv 10.1177/1077546309106520
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762117163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546309106520</sage_id><sourcerecordid>1762117163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-3cf1c6546f53ec65f9e733ca70b1de1b83711e1bd865e2c611137836423325ce3</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhSMEEqWwM1pMLAGfndgpW1W1gNQAojBHrnOBlDQutjP03-MSJKRKiOnu9L57Or2LonOgVwBSXgOVMk0EpyOgImX0IBqATCBmo0wchj7I8U4_jk6cW1FKkwToIPp4MG1Tt6gsGbeq2braEVORfJovyLRB7a1xXvlak7zW1ijtO-WNdTfkydZrZbdEtSVZoDZtuZue0ZlWtRq_bfw7klltnSe5KfE0OqpU4_Dspw6j19n0ZXIXzx9v7yfjeay5THzMdQVahFurlGNoqhFKzrWSdAklwjLjEiDUMhMpMi0AgMuMi4RxzlKNfBhd9r4baz47dL5Y105j06gWTecKkIKFzEDw_1EmhEzSTMiAXuyhK9PZkJkrAgEjBjwLEO2hkJVzFqti08dUAC12fyr2_xRW4n7FqTf89fyT_wIwq5CI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745192138</pqid></control><display><type>article</type><title>Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode</title><source>SAGE Complete A-Z List</source><creator>Najar, F. ; Nayfeh, A.H. ; Abdel-Rahman, E.M. ; Choura, S. ; El-Borgi, S.</creator><creatorcontrib>Najar, F. ; Nayfeh, A.H. ; Abdel-Rahman, E.M. ; Choura, S. ; El-Borgi, S.</creatorcontrib><description>We use a discretization technique that combines the differential quadrature method (DQM) and the finite difference method (FDM) for the space and time, respectively, to study the dynamic behavior of a microbeam-based electrostatic microactuator. The adopted mathematical model based on the Euler— Bernoulli beam theory accounts for the system nonlinearities due to mid-plane stretching and electrostatic force. The nonlinear algebraic system obtained by the DQM—FDM is used to investigate the limit-cycle solutions of the microactuator. The stability of these solutions is ascertained using Floquet theory and/or long-time integration. The method is applied for large excitation amplitudes and large quality factors for primary and secondary resonances of the first mode in case of hardening-type and softening-type behaviors. We show that the combined DQM—FDM technique improves convergence of the dynamic solutions. We identify primary, subharmonic, and superharmonic resonances of the microactuator. We observe the occurrence of dynamic pull-in due to subharmonic and superharmonic resonances as the excitation amplitude is increased. Simultaneous resonances of the first and higher modes are identified for large orbits in both primary and secondary resonances.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546309106520</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Dynamical systems ; Electrostatics ; Mathematical models ; Microactuators ; Microorganisms ; Nonlinear dynamics ; Nonlinear equations ; Nonlinearity ; Superharmonics ; Theory ; Vibration analysis</subject><ispartof>Journal of vibration and control, 2010-08, Vol.16 (9), p.1321-1349</ispartof><rights>2010 SAGE Publications</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-3cf1c6546f53ec65f9e733ca70b1de1b83711e1bd865e2c611137836423325ce3</citedby><cites>FETCH-LOGICAL-c374t-3cf1c6546f53ec65f9e733ca70b1de1b83711e1bd865e2c611137836423325ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546309106520$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546309106520$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27902,27903,43599,43600</link.rule.ids></links><search><creatorcontrib>Najar, F.</creatorcontrib><creatorcontrib>Nayfeh, A.H.</creatorcontrib><creatorcontrib>Abdel-Rahman, E.M.</creatorcontrib><creatorcontrib>Choura, S.</creatorcontrib><creatorcontrib>El-Borgi, S.</creatorcontrib><title>Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode</title><title>Journal of vibration and control</title><description>We use a discretization technique that combines the differential quadrature method (DQM) and the finite difference method (FDM) for the space and time, respectively, to study the dynamic behavior of a microbeam-based electrostatic microactuator. The adopted mathematical model based on the Euler— Bernoulli beam theory accounts for the system nonlinearities due to mid-plane stretching and electrostatic force. The nonlinear algebraic system obtained by the DQM—FDM is used to investigate the limit-cycle solutions of the microactuator. The stability of these solutions is ascertained using Floquet theory and/or long-time integration. The method is applied for large excitation amplitudes and large quality factors for primary and secondary resonances of the first mode in case of hardening-type and softening-type behaviors. We show that the combined DQM—FDM technique improves convergence of the dynamic solutions. We identify primary, subharmonic, and superharmonic resonances of the microactuator. We observe the occurrence of dynamic pull-in due to subharmonic and superharmonic resonances as the excitation amplitude is increased. Simultaneous resonances of the first and higher modes are identified for large orbits in both primary and secondary resonances.</description><subject>Dynamical systems</subject><subject>Electrostatics</subject><subject>Mathematical models</subject><subject>Microactuators</subject><subject>Microorganisms</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Superharmonics</subject><subject>Theory</subject><subject>Vibration analysis</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkTFPwzAQhSMEEqWwM1pMLAGfndgpW1W1gNQAojBHrnOBlDQutjP03-MSJKRKiOnu9L57Or2LonOgVwBSXgOVMk0EpyOgImX0IBqATCBmo0wchj7I8U4_jk6cW1FKkwToIPp4MG1Tt6gsGbeq2braEVORfJovyLRB7a1xXvlak7zW1ijtO-WNdTfkydZrZbdEtSVZoDZtuZue0ZlWtRq_bfw7klltnSe5KfE0OqpU4_Dspw6j19n0ZXIXzx9v7yfjeay5THzMdQVahFurlGNoqhFKzrWSdAklwjLjEiDUMhMpMi0AgMuMi4RxzlKNfBhd9r4baz47dL5Y105j06gWTecKkIKFzEDw_1EmhEzSTMiAXuyhK9PZkJkrAgEjBjwLEO2hkJVzFqti08dUAC12fyr2_xRW4n7FqTf89fyT_wIwq5CI</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Najar, F.</creator><creator>Nayfeh, A.H.</creator><creator>Abdel-Rahman, E.M.</creator><creator>Choura, S.</creator><creator>El-Borgi, S.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201008</creationdate><title>Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode</title><author>Najar, F. ; Nayfeh, A.H. ; Abdel-Rahman, E.M. ; Choura, S. ; El-Borgi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-3cf1c6546f53ec65f9e733ca70b1de1b83711e1bd865e2c611137836423325ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Dynamical systems</topic><topic>Electrostatics</topic><topic>Mathematical models</topic><topic>Microactuators</topic><topic>Microorganisms</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Superharmonics</topic><topic>Theory</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najar, F.</creatorcontrib><creatorcontrib>Nayfeh, A.H.</creatorcontrib><creatorcontrib>Abdel-Rahman, E.M.</creatorcontrib><creatorcontrib>Choura, S.</creatorcontrib><creatorcontrib>El-Borgi, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najar, F.</au><au>Nayfeh, A.H.</au><au>Abdel-Rahman, E.M.</au><au>Choura, S.</au><au>El-Borgi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode</atitle><jtitle>Journal of vibration and control</jtitle><date>2010-08</date><risdate>2010</risdate><volume>16</volume><issue>9</issue><spage>1321</spage><epage>1349</epage><pages>1321-1349</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>We use a discretization technique that combines the differential quadrature method (DQM) and the finite difference method (FDM) for the space and time, respectively, to study the dynamic behavior of a microbeam-based electrostatic microactuator. The adopted mathematical model based on the Euler— Bernoulli beam theory accounts for the system nonlinearities due to mid-plane stretching and electrostatic force. The nonlinear algebraic system obtained by the DQM—FDM is used to investigate the limit-cycle solutions of the microactuator. The stability of these solutions is ascertained using Floquet theory and/or long-time integration. The method is applied for large excitation amplitudes and large quality factors for primary and secondary resonances of the first mode in case of hardening-type and softening-type behaviors. We show that the combined DQM—FDM technique improves convergence of the dynamic solutions. We identify primary, subharmonic, and superharmonic resonances of the microactuator. We observe the occurrence of dynamic pull-in due to subharmonic and superharmonic resonances as the excitation amplitude is increased. Simultaneous resonances of the first and higher modes are identified for large orbits in both primary and secondary resonances.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546309106520</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2010-08, Vol.16 (9), p.1321-1349
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_miscellaneous_1762117163
source SAGE Complete A-Z List
subjects Dynamical systems
Electrostatics
Mathematical models
Microactuators
Microorganisms
Nonlinear dynamics
Nonlinear equations
Nonlinearity
Superharmonics
Theory
Vibration analysis
title Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Analysis%20of%20MEMS%20Electrostatic%20Microactuators:%20Primary%20and%20Secondary%20Resonances%20of%20the%20First%20Mode&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Najar,%20F.&rft.date=2010-08&rft.volume=16&rft.issue=9&rft.spage=1321&rft.epage=1349&rft.pages=1321-1349&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546309106520&rft_dat=%3Cproquest_cross%3E1762117163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745192138&rft_id=info:pmid/&rft_sage_id=10.1177_1077546309106520&rfr_iscdi=true