Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis
[Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular fun...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2015-11, Vol.27, p.3-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 3 |
container_title | Acta biomaterialia |
container_volume | 27 |
creator | English, Andrew Azeem, Ayesha Spanoudes, Kyriakos Jones, Eleanor Tripathi, Bhawana Basu, Nandita McNamara, Karrina Tofail, Syed A.M. Rooney, Niall Riley, Graham O’Riordan, Alan Cross, Graham Hutmacher, Dietmar Biggs, Manus Pandit, Abhay Zeugolis, Dimitrios I. |
description | [Display omitted]
Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established. |
doi_str_mv | 10.1016/j.actbio.2015.08.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762110189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706115300799</els_id><sourcerecordid>1762110189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</originalsourceid><addsrcrecordid>eNqNkU9LHTEUxYO0qFW_gUiWXTjT_HmTZFwURKwtCF1U1yHJ3DzzmDd5TTIP_PZGxrosru6F-zv3wDkInVPSUkLFt01rXLEhtozQriWqJbw7QMdUSdXITqhPdZcr1kgi6BH6kvOGEK4oU4foiAlOFRfdMbJ_ZptLMgVwibu4Tmb39HyFr_HejLOxI-Aw4X0oKdZ7HC-xnQs22I1hCs6MOMGAnyClMK2xj2mh9xWGKa5hghzyKfrszZjh7G2eoMcftw83P5v733e_bq7vG9dRWhrVs8Fw4Q0nA3FcSNURIzwM1hLrDTgwvCdeMCKgp9QxCQx471dEMS-N5Sfo6_J3l-LfGXLR25AdjKOZIM5ZUykYrdGp_gMok0JRwXlFVwvqUsw5gde7FLYmPWtK9GsReqOXIvRrEZooXYuosos3h9luYXgX_Uu-At8XAGok-wBJZxdgcjCEBK7oIYb_O7wA4qub6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727681633</pqid></control><display><type>article</type><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</creator><creatorcontrib>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</creatorcontrib><description>[Display omitted]
Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2015.08.035</identifier><identifier>PMID: 26318365</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatibility ; Biocompatible Materials - chemistry ; Biomedical materials ; Cell Proliferation - physiology ; Cells, Cultured ; Equipment Failure Analysis ; Grooves ; Humans ; In vitro testing ; In vivo testing ; In vivo tests ; Lithography ; Materials Testing ; Prosthesis Design ; Substrate stiffness ; Surface Properties ; Surface topography ; Surgical implants ; Tendon ; Tendons - cytology ; Tendons - growth & development ; Tenocyte morphology ; Tenocyte phenotype ; Tenocyte trans-differentiation ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue regeneration ; Tissue Scaffolds ; Topography</subject><ispartof>Acta biomaterialia, 2015-11, Vol.27, p.3-12</ispartof><rights>2015 Acta Materialia Inc.</rights><rights>Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</citedby><cites>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</cites><orcidid>0000-0001-5528-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2015.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26318365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>English, Andrew</creatorcontrib><creatorcontrib>Azeem, Ayesha</creatorcontrib><creatorcontrib>Spanoudes, Kyriakos</creatorcontrib><creatorcontrib>Jones, Eleanor</creatorcontrib><creatorcontrib>Tripathi, Bhawana</creatorcontrib><creatorcontrib>Basu, Nandita</creatorcontrib><creatorcontrib>McNamara, Karrina</creatorcontrib><creatorcontrib>Tofail, Syed A.M.</creatorcontrib><creatorcontrib>Rooney, Niall</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><creatorcontrib>Cross, Graham</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Biggs, Manus</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Equipment Failure Analysis</subject><subject>Grooves</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Lithography</subject><subject>Materials Testing</subject><subject>Prosthesis Design</subject><subject>Substrate stiffness</subject><subject>Surface Properties</subject><subject>Surface topography</subject><subject>Surgical implants</subject><subject>Tendon</subject><subject>Tendons - cytology</subject><subject>Tendons - growth & development</subject><subject>Tenocyte morphology</subject><subject>Tenocyte phenotype</subject><subject>Tenocyte trans-differentiation</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue regeneration</subject><subject>Tissue Scaffolds</subject><subject>Topography</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LHTEUxYO0qFW_gUiWXTjT_HmTZFwURKwtCF1U1yHJ3DzzmDd5TTIP_PZGxrosru6F-zv3wDkInVPSUkLFt01rXLEhtozQriWqJbw7QMdUSdXITqhPdZcr1kgi6BH6kvOGEK4oU4foiAlOFRfdMbJ_ZptLMgVwibu4Tmb39HyFr_HejLOxI-Aw4X0oKdZ7HC-xnQs22I1hCs6MOMGAnyClMK2xj2mh9xWGKa5hghzyKfrszZjh7G2eoMcftw83P5v733e_bq7vG9dRWhrVs8Fw4Q0nA3FcSNURIzwM1hLrDTgwvCdeMCKgp9QxCQx471dEMS-N5Sfo6_J3l-LfGXLR25AdjKOZIM5ZUykYrdGp_gMok0JRwXlFVwvqUsw5gde7FLYmPWtK9GsReqOXIvRrEZooXYuosos3h9luYXgX_Uu-At8XAGok-wBJZxdgcjCEBK7oIYb_O7wA4qub6g</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>English, Andrew</creator><creator>Azeem, Ayesha</creator><creator>Spanoudes, Kyriakos</creator><creator>Jones, Eleanor</creator><creator>Tripathi, Bhawana</creator><creator>Basu, Nandita</creator><creator>McNamara, Karrina</creator><creator>Tofail, Syed A.M.</creator><creator>Rooney, Niall</creator><creator>Riley, Graham</creator><creator>O’Riordan, Alan</creator><creator>Cross, Graham</creator><creator>Hutmacher, Dietmar</creator><creator>Biggs, Manus</creator><creator>Pandit, Abhay</creator><creator>Zeugolis, Dimitrios I.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5528-5611</orcidid></search><sort><creationdate>20151101</creationdate><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><author>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Equipment Failure Analysis</topic><topic>Grooves</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Lithography</topic><topic>Materials Testing</topic><topic>Prosthesis Design</topic><topic>Substrate stiffness</topic><topic>Surface Properties</topic><topic>Surface topography</topic><topic>Surgical implants</topic><topic>Tendon</topic><topic>Tendons - cytology</topic><topic>Tendons - growth & development</topic><topic>Tenocyte morphology</topic><topic>Tenocyte phenotype</topic><topic>Tenocyte trans-differentiation</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue regeneration</topic><topic>Tissue Scaffolds</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>English, Andrew</creatorcontrib><creatorcontrib>Azeem, Ayesha</creatorcontrib><creatorcontrib>Spanoudes, Kyriakos</creatorcontrib><creatorcontrib>Jones, Eleanor</creatorcontrib><creatorcontrib>Tripathi, Bhawana</creatorcontrib><creatorcontrib>Basu, Nandita</creatorcontrib><creatorcontrib>McNamara, Karrina</creatorcontrib><creatorcontrib>Tofail, Syed A.M.</creatorcontrib><creatorcontrib>Rooney, Niall</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><creatorcontrib>Cross, Graham</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Biggs, Manus</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>English, Andrew</au><au>Azeem, Ayesha</au><au>Spanoudes, Kyriakos</au><au>Jones, Eleanor</au><au>Tripathi, Bhawana</au><au>Basu, Nandita</au><au>McNamara, Karrina</au><au>Tofail, Syed A.M.</au><au>Rooney, Niall</au><au>Riley, Graham</au><au>O’Riordan, Alan</au><au>Cross, Graham</au><au>Hutmacher, Dietmar</au><au>Biggs, Manus</au><au>Pandit, Abhay</au><au>Zeugolis, Dimitrios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>27</volume><spage>3</spage><epage>12</epage><pages>3-12</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26318365</pmid><doi>10.1016/j.actbio.2015.08.035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5528-5611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2015-11, Vol.27, p.3-12 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762110189 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biocompatibility Biocompatible Materials - chemistry Biomedical materials Cell Proliferation - physiology Cells, Cultured Equipment Failure Analysis Grooves Humans In vitro testing In vivo testing In vivo tests Lithography Materials Testing Prosthesis Design Substrate stiffness Surface Properties Surface topography Surgical implants Tendon Tendons - cytology Tendons - growth & development Tenocyte morphology Tenocyte phenotype Tenocyte trans-differentiation Tissue Engineering - instrumentation Tissue Engineering - methods Tissue regeneration Tissue Scaffolds Topography |
title | Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20topography:%20A%20valuable%20in%20vitro%20tool,%20but%20a%20clinical%20red%20herring%20for%20in%20vivo%20tenogenesis&rft.jtitle=Acta%20biomaterialia&rft.au=English,%20Andrew&rft.date=2015-11-01&rft.volume=27&rft.spage=3&rft.epage=12&rft.pages=3-12&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2015.08.035&rft_dat=%3Cproquest_cross%3E1762110189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727681633&rft_id=info:pmid/26318365&rft_els_id=S1742706115300799&rfr_iscdi=true |