Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis

[Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2015-11, Vol.27, p.3-12
Hauptverfasser: English, Andrew, Azeem, Ayesha, Spanoudes, Kyriakos, Jones, Eleanor, Tripathi, Bhawana, Basu, Nandita, McNamara, Karrina, Tofail, Syed A.M., Rooney, Niall, Riley, Graham, O’Riordan, Alan, Cross, Graham, Hutmacher, Dietmar, Biggs, Manus, Pandit, Abhay, Zeugolis, Dimitrios I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 3
container_title Acta biomaterialia
container_volume 27
creator English, Andrew
Azeem, Ayesha
Spanoudes, Kyriakos
Jones, Eleanor
Tripathi, Bhawana
Basu, Nandita
McNamara, Karrina
Tofail, Syed A.M.
Rooney, Niall
Riley, Graham
O’Riordan, Alan
Cross, Graham
Hutmacher, Dietmar
Biggs, Manus
Pandit, Abhay
Zeugolis, Dimitrios I.
description [Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.
doi_str_mv 10.1016/j.actbio.2015.08.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762110189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706115300799</els_id><sourcerecordid>1762110189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</originalsourceid><addsrcrecordid>eNqNkU9LHTEUxYO0qFW_gUiWXTjT_HmTZFwURKwtCF1U1yHJ3DzzmDd5TTIP_PZGxrosru6F-zv3wDkInVPSUkLFt01rXLEhtozQriWqJbw7QMdUSdXITqhPdZcr1kgi6BH6kvOGEK4oU4foiAlOFRfdMbJ_ZptLMgVwibu4Tmb39HyFr_HejLOxI-Aw4X0oKdZ7HC-xnQs22I1hCs6MOMGAnyClMK2xj2mh9xWGKa5hghzyKfrszZjh7G2eoMcftw83P5v733e_bq7vG9dRWhrVs8Fw4Q0nA3FcSNURIzwM1hLrDTgwvCdeMCKgp9QxCQx471dEMS-N5Sfo6_J3l-LfGXLR25AdjKOZIM5ZUykYrdGp_gMok0JRwXlFVwvqUsw5gde7FLYmPWtK9GsReqOXIvRrEZooXYuosos3h9luYXgX_Uu-At8XAGok-wBJZxdgcjCEBK7oIYb_O7wA4qub6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727681633</pqid></control><display><type>article</type><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</creator><creatorcontrib>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</creatorcontrib><description>[Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2015.08.035</identifier><identifier>PMID: 26318365</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatibility ; Biocompatible Materials - chemistry ; Biomedical materials ; Cell Proliferation - physiology ; Cells, Cultured ; Equipment Failure Analysis ; Grooves ; Humans ; In vitro testing ; In vivo testing ; In vivo tests ; Lithography ; Materials Testing ; Prosthesis Design ; Substrate stiffness ; Surface Properties ; Surface topography ; Surgical implants ; Tendon ; Tendons - cytology ; Tendons - growth &amp; development ; Tenocyte morphology ; Tenocyte phenotype ; Tenocyte trans-differentiation ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue regeneration ; Tissue Scaffolds ; Topography</subject><ispartof>Acta biomaterialia, 2015-11, Vol.27, p.3-12</ispartof><rights>2015 Acta Materialia Inc.</rights><rights>Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</citedby><cites>FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</cites><orcidid>0000-0001-5528-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2015.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26318365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>English, Andrew</creatorcontrib><creatorcontrib>Azeem, Ayesha</creatorcontrib><creatorcontrib>Spanoudes, Kyriakos</creatorcontrib><creatorcontrib>Jones, Eleanor</creatorcontrib><creatorcontrib>Tripathi, Bhawana</creatorcontrib><creatorcontrib>Basu, Nandita</creatorcontrib><creatorcontrib>McNamara, Karrina</creatorcontrib><creatorcontrib>Tofail, Syed A.M.</creatorcontrib><creatorcontrib>Rooney, Niall</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><creatorcontrib>Cross, Graham</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Biggs, Manus</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</description><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Equipment Failure Analysis</subject><subject>Grooves</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>Lithography</subject><subject>Materials Testing</subject><subject>Prosthesis Design</subject><subject>Substrate stiffness</subject><subject>Surface Properties</subject><subject>Surface topography</subject><subject>Surgical implants</subject><subject>Tendon</subject><subject>Tendons - cytology</subject><subject>Tendons - growth &amp; development</subject><subject>Tenocyte morphology</subject><subject>Tenocyte phenotype</subject><subject>Tenocyte trans-differentiation</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue regeneration</subject><subject>Tissue Scaffolds</subject><subject>Topography</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LHTEUxYO0qFW_gUiWXTjT_HmTZFwURKwtCF1U1yHJ3DzzmDd5TTIP_PZGxrosru6F-zv3wDkInVPSUkLFt01rXLEhtozQriWqJbw7QMdUSdXITqhPdZcr1kgi6BH6kvOGEK4oU4foiAlOFRfdMbJ_ZptLMgVwibu4Tmb39HyFr_HejLOxI-Aw4X0oKdZ7HC-xnQs22I1hCs6MOMGAnyClMK2xj2mh9xWGKa5hghzyKfrszZjh7G2eoMcftw83P5v733e_bq7vG9dRWhrVs8Fw4Q0nA3FcSNURIzwM1hLrDTgwvCdeMCKgp9QxCQx471dEMS-N5Sfo6_J3l-LfGXLR25AdjKOZIM5ZUykYrdGp_gMok0JRwXlFVwvqUsw5gde7FLYmPWtK9GsReqOXIvRrEZooXYuosos3h9luYXgX_Uu-At8XAGok-wBJZxdgcjCEBK7oIYb_O7wA4qub6g</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>English, Andrew</creator><creator>Azeem, Ayesha</creator><creator>Spanoudes, Kyriakos</creator><creator>Jones, Eleanor</creator><creator>Tripathi, Bhawana</creator><creator>Basu, Nandita</creator><creator>McNamara, Karrina</creator><creator>Tofail, Syed A.M.</creator><creator>Rooney, Niall</creator><creator>Riley, Graham</creator><creator>O’Riordan, Alan</creator><creator>Cross, Graham</creator><creator>Hutmacher, Dietmar</creator><creator>Biggs, Manus</creator><creator>Pandit, Abhay</creator><creator>Zeugolis, Dimitrios I.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5528-5611</orcidid></search><sort><creationdate>20151101</creationdate><title>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</title><author>English, Andrew ; Azeem, Ayesha ; Spanoudes, Kyriakos ; Jones, Eleanor ; Tripathi, Bhawana ; Basu, Nandita ; McNamara, Karrina ; Tofail, Syed A.M. ; Rooney, Niall ; Riley, Graham ; O’Riordan, Alan ; Cross, Graham ; Hutmacher, Dietmar ; Biggs, Manus ; Pandit, Abhay ; Zeugolis, Dimitrios I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-892da36fa30d0c367850a6fedbb0bfaecea390f6206e911c27e2e39f4082f7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Equipment Failure Analysis</topic><topic>Grooves</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>Lithography</topic><topic>Materials Testing</topic><topic>Prosthesis Design</topic><topic>Substrate stiffness</topic><topic>Surface Properties</topic><topic>Surface topography</topic><topic>Surgical implants</topic><topic>Tendon</topic><topic>Tendons - cytology</topic><topic>Tendons - growth &amp; development</topic><topic>Tenocyte morphology</topic><topic>Tenocyte phenotype</topic><topic>Tenocyte trans-differentiation</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue regeneration</topic><topic>Tissue Scaffolds</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>English, Andrew</creatorcontrib><creatorcontrib>Azeem, Ayesha</creatorcontrib><creatorcontrib>Spanoudes, Kyriakos</creatorcontrib><creatorcontrib>Jones, Eleanor</creatorcontrib><creatorcontrib>Tripathi, Bhawana</creatorcontrib><creatorcontrib>Basu, Nandita</creatorcontrib><creatorcontrib>McNamara, Karrina</creatorcontrib><creatorcontrib>Tofail, Syed A.M.</creatorcontrib><creatorcontrib>Rooney, Niall</creatorcontrib><creatorcontrib>Riley, Graham</creatorcontrib><creatorcontrib>O’Riordan, Alan</creatorcontrib><creatorcontrib>Cross, Graham</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Biggs, Manus</creatorcontrib><creatorcontrib>Pandit, Abhay</creatorcontrib><creatorcontrib>Zeugolis, Dimitrios I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>English, Andrew</au><au>Azeem, Ayesha</au><au>Spanoudes, Kyriakos</au><au>Jones, Eleanor</au><au>Tripathi, Bhawana</au><au>Basu, Nandita</au><au>McNamara, Karrina</au><au>Tofail, Syed A.M.</au><au>Rooney, Niall</au><au>Riley, Graham</au><au>O’Riordan, Alan</au><au>Cross, Graham</au><au>Hutmacher, Dietmar</au><au>Biggs, Manus</au><au>Pandit, Abhay</au><au>Zeugolis, Dimitrios I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>27</volume><spage>3</spage><epage>12</epage><pages>3-12</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Controlling the cell–substrate interactions at the bio-interface is becoming an inherent element in the design of implantable devices. Modulation of cellular adhesion in vitro, through topographical cues, is a well-documented process that offers control over subsequent cellular functions. However, it is still unclear whether surface topography can be translated into a clinically functional response in vivo at the tissue/device interface. Herein, we demonstrated that anisotropic substrates with a groove depth of ∼317nm and ∼1988nm promoted human tenocyte alignment parallel to the underlying topography in vitro. However, the rigid poly(lactic-co-glycolic acid) substrates used in this study upregulated the expression of chondrogenic and osteogenic genes, indicating possible tenocyte trans-differentiation. Of significant importance is that none of the topographies assessed (∼37nm, ∼317nm and ∼1988nm groove depth) induced extracellular matrix orientation parallel to the substrate orientation in a rat patellar tendon model. These data indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for organised neotissue formation in vivo, should multifactorial approaches that consider both surface topography and substrate rigidity be established. Herein, we ventured to assess the influence of parallel groves, ranging from nano- to micro-level, on tenocytes response in vitro and on host response using a tendon and a subcutaneous model. In vitro analysis indicates that anisotropically ordered micro-scale grooves, as opposed to nano-scale grooves, maintain physiological cell morphology. The rather rigid PLGA substrates appeared to induce trans-differentiation towards chondrogenic and/or steogenic lineage, as evidence by TILDA gene analysis. In vivo data in both tendon and subcutaneous models indicate that none of the substrates induced bidirectional host cell and tissue growth. Collective, these observations indicate that two-dimensional imprinting technologies are useful tools for in vitro cell phenotype maintenance, rather than for directional neotissue formation, should multifactorial approaches that consider both surface topography and substrate rigidity be established.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26318365</pmid><doi>10.1016/j.actbio.2015.08.035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5528-5611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2015-11, Vol.27, p.3-12
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1762110189
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biocompatibility
Biocompatible Materials - chemistry
Biomedical materials
Cell Proliferation - physiology
Cells, Cultured
Equipment Failure Analysis
Grooves
Humans
In vitro testing
In vivo testing
In vivo tests
Lithography
Materials Testing
Prosthesis Design
Substrate stiffness
Surface Properties
Surface topography
Surgical implants
Tendon
Tendons - cytology
Tendons - growth & development
Tenocyte morphology
Tenocyte phenotype
Tenocyte trans-differentiation
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue regeneration
Tissue Scaffolds
Topography
title Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20topography:%20A%20valuable%20in%20vitro%20tool,%20but%20a%20clinical%20red%20herring%20for%20in%20vivo%20tenogenesis&rft.jtitle=Acta%20biomaterialia&rft.au=English,%20Andrew&rft.date=2015-11-01&rft.volume=27&rft.spage=3&rft.epage=12&rft.pages=3-12&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2015.08.035&rft_dat=%3Cproquest_cross%3E1762110189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727681633&rft_id=info:pmid/26318365&rft_els_id=S1742706115300799&rfr_iscdi=true