Solvent Mimicry with Methylene Carbene to Probe Protein Topography

The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-10, Vol.87 (19), p.10080-10087
Hauptverfasser: Gómez, Gabriela Elena, Monti, José Luis E., Mundo, Mariana Rocío, Delfino, José María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10087
container_issue 19
container_start_page 10080
container_title Analytical chemistry (Washington)
container_volume 87
creator Gómez, Gabriela Elena
Monti, José Luis E.
Mundo, Mariana Rocío
Delfino, José María
description The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.
doi_str_mv 10.1021/acs.analchem.5b02724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762107684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762107684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EouXxDxCKxIVLyq7j2M4RKl5SK5Ao58hxHZoqiYudgPrvSdQWJA6Iy-7lm9nVDCFnCCMEildK-5GqVakXphrFGVBB2R4ZYkwh5FLSfTIEgCikAmBAjrxfAiAC8kMyoDxikgockpsXW36YugmmRVVotw4-i2YRTE2zWJemNsFYuazfjQ2enc1MPxtT1MHMruybU6vF-oQc5Kr05nS7j8nr3e1s_BBOnu4fx9eTUDFImhAjgcDyDPLczCPOkHNJY0wSmuRxLJici0iAnkcYx5nUmVbKKEBqELlGHUXH5HLju3L2vTW-SavCa1OWqja29SkKThEEl-wfKMqke0gmHXrxC13a1nW59hTFhDEm-ttsQ2lnvXcmT1euqJRbpwhpX0fa1ZHu6ki3dXSy8615m1Vm_i3a5d8BsAF6-c_hvzy_AHT_lxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721944473</pqid></control><display><type>article</type><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</creator><creatorcontrib>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</creatorcontrib><description>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b02724</identifier><identifier>PMID: 26348271</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Bees ; Binding Sites ; Calcium ; Calmodulin - chemistry ; Carbenes ; Cattle ; Diazomethane - chemistry ; Diazomethane - metabolism ; Exposure ; Hydrophobic surfaces ; Indicators and Reagents ; Marking ; Melitten - chemistry ; Melitten - metabolism ; Methane - analogs &amp; derivatives ; Methane - chemistry ; Methylation ; Methylene ; Models, Molecular ; Molecular Sequence Data ; Polypeptides ; Protein Conformation ; Protein Folding ; Proteins ; Solvents ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tandem Mass Spectrometry ; Topography</subject><ispartof>Analytical chemistry (Washington), 2015-10, Vol.87 (19), p.10080-10087</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 6, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</citedby><cites>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b02724$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b02724$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Gabriela Elena</creatorcontrib><creatorcontrib>Monti, José Luis E.</creatorcontrib><creatorcontrib>Mundo, Mariana Rocío</creatorcontrib><creatorcontrib>Delfino, José María</creatorcontrib><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bees</subject><subject>Binding Sites</subject><subject>Calcium</subject><subject>Calmodulin - chemistry</subject><subject>Carbenes</subject><subject>Cattle</subject><subject>Diazomethane - chemistry</subject><subject>Diazomethane - metabolism</subject><subject>Exposure</subject><subject>Hydrophobic surfaces</subject><subject>Indicators and Reagents</subject><subject>Marking</subject><subject>Melitten - chemistry</subject><subject>Melitten - metabolism</subject><subject>Methane - analogs &amp; derivatives</subject><subject>Methane - chemistry</subject><subject>Methylation</subject><subject>Methylene</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Polypeptides</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Solvents</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Tandem Mass Spectrometry</subject><subject>Topography</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPwzAQhC0EouXxDxCKxIVLyq7j2M4RKl5SK5Ao58hxHZoqiYudgPrvSdQWJA6Iy-7lm9nVDCFnCCMEildK-5GqVakXphrFGVBB2R4ZYkwh5FLSfTIEgCikAmBAjrxfAiAC8kMyoDxikgockpsXW36YugmmRVVotw4-i2YRTE2zWJemNsFYuazfjQ2enc1MPxtT1MHMruybU6vF-oQc5Kr05nS7j8nr3e1s_BBOnu4fx9eTUDFImhAjgcDyDPLczCPOkHNJY0wSmuRxLJici0iAnkcYx5nUmVbKKEBqELlGHUXH5HLju3L2vTW-SavCa1OWqja29SkKThEEl-wfKMqke0gmHXrxC13a1nW59hTFhDEm-ttsQ2lnvXcmT1euqJRbpwhpX0fa1ZHu6ki3dXSy8615m1Vm_i3a5d8BsAF6-c_hvzy_AHT_lxk</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Gómez, Gabriela Elena</creator><creator>Monti, José Luis E.</creator><creator>Mundo, Mariana Rocío</creator><creator>Delfino, José María</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151006</creationdate><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><author>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bees</topic><topic>Binding Sites</topic><topic>Calcium</topic><topic>Calmodulin - chemistry</topic><topic>Carbenes</topic><topic>Cattle</topic><topic>Diazomethane - chemistry</topic><topic>Diazomethane - metabolism</topic><topic>Exposure</topic><topic>Hydrophobic surfaces</topic><topic>Indicators and Reagents</topic><topic>Marking</topic><topic>Melitten - chemistry</topic><topic>Melitten - metabolism</topic><topic>Methane - analogs &amp; derivatives</topic><topic>Methane - chemistry</topic><topic>Methylation</topic><topic>Methylene</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Polypeptides</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Solvents</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Tandem Mass Spectrometry</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Gabriela Elena</creatorcontrib><creatorcontrib>Monti, José Luis E.</creatorcontrib><creatorcontrib>Mundo, Mariana Rocío</creatorcontrib><creatorcontrib>Delfino, José María</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Gabriela Elena</au><au>Monti, José Luis E.</au><au>Mundo, Mariana Rocío</au><au>Delfino, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>87</volume><issue>19</issue><spage>10080</spage><epage>10087</epage><pages>10080-10087</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26348271</pmid><doi>10.1021/acs.analchem.5b02724</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-10, Vol.87 (19), p.10080-10087
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1762107684
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Animals
Bees
Binding Sites
Calcium
Calmodulin - chemistry
Carbenes
Cattle
Diazomethane - chemistry
Diazomethane - metabolism
Exposure
Hydrophobic surfaces
Indicators and Reagents
Marking
Melitten - chemistry
Melitten - metabolism
Methane - analogs & derivatives
Methane - chemistry
Methylation
Methylene
Models, Molecular
Molecular Sequence Data
Polypeptides
Protein Conformation
Protein Folding
Proteins
Solvents
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Tandem Mass Spectrometry
Topography
title Solvent Mimicry with Methylene Carbene to Probe Protein Topography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20Mimicry%20with%20Methylene%20Carbene%20to%20Probe%20Protein%20Topography&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Go%CC%81mez,%20Gabriela%20Elena&rft.date=2015-10-06&rft.volume=87&rft.issue=19&rft.spage=10080&rft.epage=10087&rft.pages=10080-10087&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b02724&rft_dat=%3Cproquest_cross%3E1762107684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721944473&rft_id=info:pmid/26348271&rfr_iscdi=true