Solvent Mimicry with Methylene Carbene to Probe Protein Topography
The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochem...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-10, Vol.87 (19), p.10080-10087 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10087 |
---|---|
container_issue | 19 |
container_start_page | 10080 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Gómez, Gabriela Elena Monti, José Luis E. Mundo, Mariana Rocío Delfino, José María |
description | The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions. |
doi_str_mv | 10.1021/acs.analchem.5b02724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762107684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762107684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</originalsourceid><addsrcrecordid>eNqNkUtPwzAQhC0EouXxDxCKxIVLyq7j2M4RKl5SK5Ao58hxHZoqiYudgPrvSdQWJA6Iy-7lm9nVDCFnCCMEildK-5GqVakXphrFGVBB2R4ZYkwh5FLSfTIEgCikAmBAjrxfAiAC8kMyoDxikgockpsXW36YugmmRVVotw4-i2YRTE2zWJemNsFYuazfjQ2enc1MPxtT1MHMruybU6vF-oQc5Kr05nS7j8nr3e1s_BBOnu4fx9eTUDFImhAjgcDyDPLczCPOkHNJY0wSmuRxLJici0iAnkcYx5nUmVbKKEBqELlGHUXH5HLju3L2vTW-SavCa1OWqja29SkKThEEl-wfKMqke0gmHXrxC13a1nW59hTFhDEm-ttsQ2lnvXcmT1euqJRbpwhpX0fa1ZHu6ki3dXSy8615m1Vm_i3a5d8BsAF6-c_hvzy_AHT_lxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721944473</pqid></control><display><type>article</type><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</creator><creatorcontrib>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</creatorcontrib><description>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b02724</identifier><identifier>PMID: 26348271</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Bees ; Binding Sites ; Calcium ; Calmodulin - chemistry ; Carbenes ; Cattle ; Diazomethane - chemistry ; Diazomethane - metabolism ; Exposure ; Hydrophobic surfaces ; Indicators and Reagents ; Marking ; Melitten - chemistry ; Melitten - metabolism ; Methane - analogs & derivatives ; Methane - chemistry ; Methylation ; Methylene ; Models, Molecular ; Molecular Sequence Data ; Polypeptides ; Protein Conformation ; Protein Folding ; Proteins ; Solvents ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tandem Mass Spectrometry ; Topography</subject><ispartof>Analytical chemistry (Washington), 2015-10, Vol.87 (19), p.10080-10087</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 6, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</citedby><cites>FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b02724$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b02724$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26348271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Gabriela Elena</creatorcontrib><creatorcontrib>Monti, José Luis E.</creatorcontrib><creatorcontrib>Mundo, Mariana Rocío</creatorcontrib><creatorcontrib>Delfino, José María</creatorcontrib><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bees</subject><subject>Binding Sites</subject><subject>Calcium</subject><subject>Calmodulin - chemistry</subject><subject>Carbenes</subject><subject>Cattle</subject><subject>Diazomethane - chemistry</subject><subject>Diazomethane - metabolism</subject><subject>Exposure</subject><subject>Hydrophobic surfaces</subject><subject>Indicators and Reagents</subject><subject>Marking</subject><subject>Melitten - chemistry</subject><subject>Melitten - metabolism</subject><subject>Methane - analogs & derivatives</subject><subject>Methane - chemistry</subject><subject>Methylation</subject><subject>Methylene</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Polypeptides</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Solvents</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Tandem Mass Spectrometry</subject><subject>Topography</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtPwzAQhC0EouXxDxCKxIVLyq7j2M4RKl5SK5Ao58hxHZoqiYudgPrvSdQWJA6Iy-7lm9nVDCFnCCMEildK-5GqVakXphrFGVBB2R4ZYkwh5FLSfTIEgCikAmBAjrxfAiAC8kMyoDxikgockpsXW36YugmmRVVotw4-i2YRTE2zWJemNsFYuazfjQ2enc1MPxtT1MHMruybU6vF-oQc5Kr05nS7j8nr3e1s_BBOnu4fx9eTUDFImhAjgcDyDPLczCPOkHNJY0wSmuRxLJici0iAnkcYx5nUmVbKKEBqELlGHUXH5HLju3L2vTW-SavCa1OWqja29SkKThEEl-wfKMqke0gmHXrxC13a1nW59hTFhDEm-ttsQ2lnvXcmT1euqJRbpwhpX0fa1ZHu6ki3dXSy8615m1Vm_i3a5d8BsAF6-c_hvzy_AHT_lxk</recordid><startdate>20151006</startdate><enddate>20151006</enddate><creator>Gómez, Gabriela Elena</creator><creator>Monti, José Luis E.</creator><creator>Mundo, Mariana Rocío</creator><creator>Delfino, José María</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20151006</creationdate><title>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</title><author>Gómez, Gabriela Elena ; Monti, José Luis E. ; Mundo, Mariana Rocío ; Delfino, José María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-137104fb0ffed36416682519929f55748d7370cd3155b8cbcaaea012e116c1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bees</topic><topic>Binding Sites</topic><topic>Calcium</topic><topic>Calmodulin - chemistry</topic><topic>Carbenes</topic><topic>Cattle</topic><topic>Diazomethane - chemistry</topic><topic>Diazomethane - metabolism</topic><topic>Exposure</topic><topic>Hydrophobic surfaces</topic><topic>Indicators and Reagents</topic><topic>Marking</topic><topic>Melitten - chemistry</topic><topic>Melitten - metabolism</topic><topic>Methane - analogs & derivatives</topic><topic>Methane - chemistry</topic><topic>Methylation</topic><topic>Methylene</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Polypeptides</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Solvents</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Tandem Mass Spectrometry</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Gabriela Elena</creatorcontrib><creatorcontrib>Monti, José Luis E.</creatorcontrib><creatorcontrib>Mundo, Mariana Rocío</creatorcontrib><creatorcontrib>Delfino, José María</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Gabriela Elena</au><au>Monti, José Luis E.</au><au>Mundo, Mariana Rocío</au><au>Delfino, José María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvent Mimicry with Methylene Carbene to Probe Protein Topography</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-10-06</date><risdate>2015</risdate><volume>87</volume><issue>19</issue><spage>10080</spage><epage>10087</epage><pages>10080-10087</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca2+ binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca2+-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91–106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel’s differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26348271</pmid><doi>10.1021/acs.analchem.5b02724</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-10, Vol.87 (19), p.10080-10087 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762107684 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Animals Bees Binding Sites Calcium Calmodulin - chemistry Carbenes Cattle Diazomethane - chemistry Diazomethane - metabolism Exposure Hydrophobic surfaces Indicators and Reagents Marking Melitten - chemistry Melitten - metabolism Methane - analogs & derivatives Methane - chemistry Methylation Methylene Models, Molecular Molecular Sequence Data Polypeptides Protein Conformation Protein Folding Proteins Solvents Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Tandem Mass Spectrometry Topography |
title | Solvent Mimicry with Methylene Carbene to Probe Protein Topography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvent%20Mimicry%20with%20Methylene%20Carbene%20to%20Probe%20Protein%20Topography&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Go%CC%81mez,%20Gabriela%20Elena&rft.date=2015-10-06&rft.volume=87&rft.issue=19&rft.spage=10080&rft.epage=10087&rft.pages=10080-10087&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b02724&rft_dat=%3Cproquest_cross%3E1762107684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721944473&rft_id=info:pmid/26348271&rfr_iscdi=true |