Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates

Novel forward osmosis (FO) is a membrane-based separation process with significant potentials for low energy desalination. While this technology offers various benefits, overcoming its low water flux performance caused by internal concentration polarization (ICP) of solutes in porous substrates rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2016-01, Vol.377, p.152-162
Hauptverfasser: Ghanbari, M., Emadzadeh, D., Lau, W.J., Riazi, H., Almasi, D., Ismail, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 152
container_title Desalination
container_volume 377
creator Ghanbari, M.
Emadzadeh, D.
Lau, W.J.
Riazi, H.
Almasi, D.
Ismail, A.F.
description Novel forward osmosis (FO) is a membrane-based separation process with significant potentials for low energy desalination. While this technology offers various benefits, overcoming its low water flux performance caused by internal concentration polarization (ICP) of solutes in porous substrates remains a challenge. This study aims at addressing this issue by introducing hydrophilic halloysite nanotubes (HNTs) into substrate made of polysulfone (PSF). The thin film nanocomposite (TFN) membranes suitable for FO applications were prepared via interfacial polymerization on the top surface of PSF-HNT nanocomposite substrates. The results obtained from filtration experiments showed that the TFN membrane prepared with 0.5wt% HNTs (TFN0.5 membrane) demonstrated the most satisfactory results by exhibiting high water permeability and low reverse solute flux. Furthermore, TFN0.5 membrane exhibited remarkably higher water flux than that of control TFC membrane in both FO (27.7 vs 13.3L/m2h) and PRO (42.3 vs 26.0L/m2h) configurations when they were tested with 10mM NaCl as feed solution and 2M NaCl as draw solution. This improvement can be ascribed to the fact that the structural parameter of TFN0.5 is much lower compared to control TFC membrane (0.37 vs 0.95mm), leading to reduced ICP effect. •TFN FO membranes were prepared by incorporating HNTs in substrate.•Finger-like structure and hydrophilic FO membranes were formed by PSf-HNTs substrates.•S value and ICP were minimized in the resulting TFN FO membranes.•Synthesized TFN FO membranes displayed better performance compared to TFC membrane.
doi_str_mv 10.1016/j.desal.2015.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762107676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916415300801</els_id><sourcerecordid>1762107676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-aa0242ae80cf6c6f57a6b4349b4fcfd0afefcb887c156acc727fae239895ed043</originalsourceid><addsrcrecordid>eNqNkbGO1DAQhiMEEsvBE9C4pEnOdhwnKSjQCQ6kQzRQWxNnzHnlxMHjgJaH4Jnx3iLRIarRjL5vxtZfVS8FbwQX-vrYzEgQGslF1_Cx4WJ8VB3E0Le1Ulo9rg6cC1GPQqun1TOiY2nl2LaH6tdHv_rF__TrV0Y57TbvCQLbIMGCGROLjuV7vzLnw8JsXLZIPiNzMf2ANLNISxkQW3CZEqxIbKfzri2GE-3BxRWv7yGEeHrQVlhj3qeCwV-H0T6V25CRnldPHATCF3_qVfXl3dvPN-_ru0-3H27e3NVW9TLXAFwqCThw67TVrutBT6pV46ScdTMHh85Ow9Bb0Wmwtpe9A5TtOIwdzly1V9Wry94txW87UjaLJ4shlOfEnYzotRS8173-D1QWbui6M9peUJsiUUJntuQXSCcjuDkHZY7mIShzDsrw0ZSgivX6YmH58HePyZD1uFqcfUKbzRz9P_3fylmi7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727678556</pqid></control><display><type>article</type><title>Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates</title><source>Elsevier ScienceDirect Journals</source><creator>Ghanbari, M. ; Emadzadeh, D. ; Lau, W.J. ; Riazi, H. ; Almasi, D. ; Ismail, A.F.</creator><creatorcontrib>Ghanbari, M. ; Emadzadeh, D. ; Lau, W.J. ; Riazi, H. ; Almasi, D. ; Ismail, A.F.</creatorcontrib><description>Novel forward osmosis (FO) is a membrane-based separation process with significant potentials for low energy desalination. While this technology offers various benefits, overcoming its low water flux performance caused by internal concentration polarization (ICP) of solutes in porous substrates remains a challenge. This study aims at addressing this issue by introducing hydrophilic halloysite nanotubes (HNTs) into substrate made of polysulfone (PSF). The thin film nanocomposite (TFN) membranes suitable for FO applications were prepared via interfacial polymerization on the top surface of PSF-HNT nanocomposite substrates. The results obtained from filtration experiments showed that the TFN membrane prepared with 0.5wt% HNTs (TFN0.5 membrane) demonstrated the most satisfactory results by exhibiting high water permeability and low reverse solute flux. Furthermore, TFN0.5 membrane exhibited remarkably higher water flux than that of control TFC membrane in both FO (27.7 vs 13.3L/m2h) and PRO (42.3 vs 26.0L/m2h) configurations when they were tested with 10mM NaCl as feed solution and 2M NaCl as draw solution. This improvement can be ascribed to the fact that the structural parameter of TFN0.5 is much lower compared to control TFC membrane (0.37 vs 0.95mm), leading to reduced ICP effect. •TFN FO membranes were prepared by incorporating HNTs in substrate.•Finger-like structure and hydrophilic FO membranes were formed by PSf-HNTs substrates.•S value and ICP were minimized in the resulting TFN FO membranes.•Synthesized TFN FO membranes displayed better performance compared to TFC membrane.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2015.09.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Desalination ; Flux ; Forward osmosis ; Halloysite nanotubes ; Inductively coupled plasma ; Membranes ; Nanocomposites ; Nanotubes ; Osmosis ; Polysulfone resins ; Structural parameter ; Thin film nanocomposite membrane ; Thin films</subject><ispartof>Desalination, 2016-01, Vol.377, p.152-162</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-aa0242ae80cf6c6f57a6b4349b4fcfd0afefcb887c156acc727fae239895ed043</citedby><cites>FETCH-LOGICAL-c472t-aa0242ae80cf6c6f57a6b4349b4fcfd0afefcb887c156acc727fae239895ed043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011916415300801$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ghanbari, M.</creatorcontrib><creatorcontrib>Emadzadeh, D.</creatorcontrib><creatorcontrib>Lau, W.J.</creatorcontrib><creatorcontrib>Riazi, H.</creatorcontrib><creatorcontrib>Almasi, D.</creatorcontrib><creatorcontrib>Ismail, A.F.</creatorcontrib><title>Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates</title><title>Desalination</title><description>Novel forward osmosis (FO) is a membrane-based separation process with significant potentials for low energy desalination. While this technology offers various benefits, overcoming its low water flux performance caused by internal concentration polarization (ICP) of solutes in porous substrates remains a challenge. This study aims at addressing this issue by introducing hydrophilic halloysite nanotubes (HNTs) into substrate made of polysulfone (PSF). The thin film nanocomposite (TFN) membranes suitable for FO applications were prepared via interfacial polymerization on the top surface of PSF-HNT nanocomposite substrates. The results obtained from filtration experiments showed that the TFN membrane prepared with 0.5wt% HNTs (TFN0.5 membrane) demonstrated the most satisfactory results by exhibiting high water permeability and low reverse solute flux. Furthermore, TFN0.5 membrane exhibited remarkably higher water flux than that of control TFC membrane in both FO (27.7 vs 13.3L/m2h) and PRO (42.3 vs 26.0L/m2h) configurations when they were tested with 10mM NaCl as feed solution and 2M NaCl as draw solution. This improvement can be ascribed to the fact that the structural parameter of TFN0.5 is much lower compared to control TFC membrane (0.37 vs 0.95mm), leading to reduced ICP effect. •TFN FO membranes were prepared by incorporating HNTs in substrate.•Finger-like structure and hydrophilic FO membranes were formed by PSf-HNTs substrates.•S value and ICP were minimized in the resulting TFN FO membranes.•Synthesized TFN FO membranes displayed better performance compared to TFC membrane.</description><subject>Desalination</subject><subject>Flux</subject><subject>Forward osmosis</subject><subject>Halloysite nanotubes</subject><subject>Inductively coupled plasma</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanotubes</subject><subject>Osmosis</subject><subject>Polysulfone resins</subject><subject>Structural parameter</subject><subject>Thin film nanocomposite membrane</subject><subject>Thin films</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkbGO1DAQhiMEEsvBE9C4pEnOdhwnKSjQCQ6kQzRQWxNnzHnlxMHjgJaH4Jnx3iLRIarRjL5vxtZfVS8FbwQX-vrYzEgQGslF1_Cx4WJ8VB3E0Le1Ulo9rg6cC1GPQqun1TOiY2nl2LaH6tdHv_rF__TrV0Y57TbvCQLbIMGCGROLjuV7vzLnw8JsXLZIPiNzMf2ANLNISxkQW3CZEqxIbKfzri2GE-3BxRWv7yGEeHrQVlhj3qeCwV-H0T6V25CRnldPHATCF3_qVfXl3dvPN-_ru0-3H27e3NVW9TLXAFwqCThw67TVrutBT6pV46ScdTMHh85Ow9Bb0Wmwtpe9A5TtOIwdzly1V9Wry94txW87UjaLJ4shlOfEnYzotRS8173-D1QWbui6M9peUJsiUUJntuQXSCcjuDkHZY7mIShzDsrw0ZSgivX6YmH58HePyZD1uFqcfUKbzRz9P_3fylmi7Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ghanbari, M.</creator><creator>Emadzadeh, D.</creator><creator>Lau, W.J.</creator><creator>Riazi, H.</creator><creator>Almasi, D.</creator><creator>Ismail, A.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160101</creationdate><title>Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates</title><author>Ghanbari, M. ; Emadzadeh, D. ; Lau, W.J. ; Riazi, H. ; Almasi, D. ; Ismail, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-aa0242ae80cf6c6f57a6b4349b4fcfd0afefcb887c156acc727fae239895ed043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Desalination</topic><topic>Flux</topic><topic>Forward osmosis</topic><topic>Halloysite nanotubes</topic><topic>Inductively coupled plasma</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanotubes</topic><topic>Osmosis</topic><topic>Polysulfone resins</topic><topic>Structural parameter</topic><topic>Thin film nanocomposite membrane</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbari, M.</creatorcontrib><creatorcontrib>Emadzadeh, D.</creatorcontrib><creatorcontrib>Lau, W.J.</creatorcontrib><creatorcontrib>Riazi, H.</creatorcontrib><creatorcontrib>Almasi, D.</creatorcontrib><creatorcontrib>Ismail, A.F.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbari, M.</au><au>Emadzadeh, D.</au><au>Lau, W.J.</au><au>Riazi, H.</au><au>Almasi, D.</au><au>Ismail, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates</atitle><jtitle>Desalination</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>377</volume><spage>152</spage><epage>162</epage><pages>152-162</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><abstract>Novel forward osmosis (FO) is a membrane-based separation process with significant potentials for low energy desalination. While this technology offers various benefits, overcoming its low water flux performance caused by internal concentration polarization (ICP) of solutes in porous substrates remains a challenge. This study aims at addressing this issue by introducing hydrophilic halloysite nanotubes (HNTs) into substrate made of polysulfone (PSF). The thin film nanocomposite (TFN) membranes suitable for FO applications were prepared via interfacial polymerization on the top surface of PSF-HNT nanocomposite substrates. The results obtained from filtration experiments showed that the TFN membrane prepared with 0.5wt% HNTs (TFN0.5 membrane) demonstrated the most satisfactory results by exhibiting high water permeability and low reverse solute flux. Furthermore, TFN0.5 membrane exhibited remarkably higher water flux than that of control TFC membrane in both FO (27.7 vs 13.3L/m2h) and PRO (42.3 vs 26.0L/m2h) configurations when they were tested with 10mM NaCl as feed solution and 2M NaCl as draw solution. This improvement can be ascribed to the fact that the structural parameter of TFN0.5 is much lower compared to control TFC membrane (0.37 vs 0.95mm), leading to reduced ICP effect. •TFN FO membranes were prepared by incorporating HNTs in substrate.•Finger-like structure and hydrophilic FO membranes were formed by PSf-HNTs substrates.•S value and ICP were minimized in the resulting TFN FO membranes.•Synthesized TFN FO membranes displayed better performance compared to TFC membrane.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2015.09.019</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2016-01, Vol.377, p.152-162
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_1762107676
source Elsevier ScienceDirect Journals
subjects Desalination
Flux
Forward osmosis
Halloysite nanotubes
Inductively coupled plasma
Membranes
Nanocomposites
Nanotubes
Osmosis
Polysulfone resins
Structural parameter
Thin film nanocomposite membrane
Thin films
title Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimizing%20structural%20parameter%20of%20thin%20film%20composite%20forward%20osmosis%20membranes%20using%20polysulfone/halloysite%20nanotubes%20as%20membrane%20substrates&rft.jtitle=Desalination&rft.au=Ghanbari,%20M.&rft.date=2016-01-01&rft.volume=377&rft.spage=152&rft.epage=162&rft.pages=152-162&rft.issn=0011-9164&rft.eissn=1873-4464&rft_id=info:doi/10.1016/j.desal.2015.09.019&rft_dat=%3Cproquest_cross%3E1762107676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727678556&rft_id=info:pmid/&rft_els_id=S0011916415300801&rfr_iscdi=true