A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis

Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2015-12, Vol.64-65, p.217-232
Hauptverfasser: Liu, Qinming, Dong, Ming, Lv, Wenyuan, Geng, Xiuli, Li, Yupeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue
container_start_page 217
container_title Mechanical systems and signal processing
container_volume 64-65
creator Liu, Qinming
Dong, Ming
Lv, Wenyuan
Geng, Xiuli
Li, Yupeng
description Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis. •Multi-sensor monitoring equipment health prognosis is analyzed.•Adaptive hidden semi-Markov model is proposed for health prognosis.•The proposed model and hazard rate equations are used to predict RUL.•The performance of the proposed methods by one case study is analyzed.•The proposed methods have better performance than other methods.
doi_str_mv 10.1016/j.ymssp.2015.03.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762106415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327015001570</els_id><sourcerecordid>1762106415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-93c88d38b9ef4df25b5dc07e87dad5442acab0404f30d2a0cdb89638c27064403</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0EEsvBL6BxSZMwjpOsU1CcTnAgHaKB2vLak1svsZ3zOCvdv8fLUlONRnre-XgYey-gFSDGj6f2ORCtbQdiaEG20E0v2E7ANDaiE-NLtgOlVCO7Pbxmb4hOADD1MO5YuOUxnXHhAcsxOb6Rj4_cOLMWf0Z-9M5h5ITBN99N_p3OPCRX8TllHral-IYw0qVJ0ZeUL2l82vwaMBZ-RLOUI19zeoyJPL1lr2azEL77V2_Yry-ff959bR5-3H-7u31obD2qNJO0SjmpDhPOvZu74TA4C3tUe2fc0PedseYAPfSzBNcZsO6gplEqW_8b-x7kDftwnVs3P21IRQdPFpfFREwbabEfO1FRMVRUXlGbE1HGWa_ZB5OftQB9katP-q9cfZGrQeoqt6Y-XVNYvzh7zJqsx2jR-Yy2aJf8f_N_ABt4hpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762106415</pqid></control><display><type>article</type><title>A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Qinming ; Dong, Ming ; Lv, Wenyuan ; Geng, Xiuli ; Li, Yupeng</creator><creatorcontrib>Liu, Qinming ; Dong, Ming ; Lv, Wenyuan ; Geng, Xiuli ; Li, Yupeng</creatorcontrib><description>Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis. •Multi-sensor monitoring equipment health prognosis is analyzed.•Adaptive hidden semi-Markov model is proposed for health prognosis.•The proposed model and hazard rate equations are used to predict RUL.•The performance of the proposed methods by one case study is analyzed.•The proposed methods have better performance than other methods.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2015.03.029</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive training ; Algorithms ; Health ; Hidden semi-Markov model ; Hydraulics ; Mathematical models ; Mechanical systems ; Monitoring ; Prognosis ; Regression ; Remaining useful lifetime</subject><ispartof>Mechanical systems and signal processing, 2015-12, Vol.64-65, p.217-232</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-93c88d38b9ef4df25b5dc07e87dad5442acab0404f30d2a0cdb89638c27064403</citedby><cites>FETCH-LOGICAL-c406t-93c88d38b9ef4df25b5dc07e87dad5442acab0404f30d2a0cdb89638c27064403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0888327015001570$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Qinming</creatorcontrib><creatorcontrib>Dong, Ming</creatorcontrib><creatorcontrib>Lv, Wenyuan</creatorcontrib><creatorcontrib>Geng, Xiuli</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><title>A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis</title><title>Mechanical systems and signal processing</title><description>Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis. •Multi-sensor monitoring equipment health prognosis is analyzed.•Adaptive hidden semi-Markov model is proposed for health prognosis.•The proposed model and hazard rate equations are used to predict RUL.•The performance of the proposed methods by one case study is analyzed.•The proposed methods have better performance than other methods.</description><subject>Adaptive training</subject><subject>Algorithms</subject><subject>Health</subject><subject>Hidden semi-Markov model</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Monitoring</subject><subject>Prognosis</subject><subject>Regression</subject><subject>Remaining useful lifetime</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD2P1DAQhi0EEsvBL6BxSZMwjpOsU1CcTnAgHaKB2vLak1svsZ3zOCvdv8fLUlONRnre-XgYey-gFSDGj6f2ORCtbQdiaEG20E0v2E7ANDaiE-NLtgOlVCO7Pbxmb4hOADD1MO5YuOUxnXHhAcsxOb6Rj4_cOLMWf0Z-9M5h5ITBN99N_p3OPCRX8TllHral-IYw0qVJ0ZeUL2l82vwaMBZ-RLOUI19zeoyJPL1lr2azEL77V2_Yry-ff959bR5-3H-7u31obD2qNJO0SjmpDhPOvZu74TA4C3tUe2fc0PedseYAPfSzBNcZsO6gplEqW_8b-x7kDftwnVs3P21IRQdPFpfFREwbabEfO1FRMVRUXlGbE1HGWa_ZB5OftQB9katP-q9cfZGrQeoqt6Y-XVNYvzh7zJqsx2jR-Yy2aJf8f_N_ABt4hpw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Liu, Qinming</creator><creator>Dong, Ming</creator><creator>Lv, Wenyuan</creator><creator>Geng, Xiuli</creator><creator>Li, Yupeng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis</title><author>Liu, Qinming ; Dong, Ming ; Lv, Wenyuan ; Geng, Xiuli ; Li, Yupeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-93c88d38b9ef4df25b5dc07e87dad5442acab0404f30d2a0cdb89638c27064403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive training</topic><topic>Algorithms</topic><topic>Health</topic><topic>Hidden semi-Markov model</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Monitoring</topic><topic>Prognosis</topic><topic>Regression</topic><topic>Remaining useful lifetime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qinming</creatorcontrib><creatorcontrib>Dong, Ming</creatorcontrib><creatorcontrib>Lv, Wenyuan</creatorcontrib><creatorcontrib>Geng, Xiuli</creatorcontrib><creatorcontrib>Li, Yupeng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qinming</au><au>Dong, Ming</au><au>Lv, Wenyuan</au><au>Geng, Xiuli</au><au>Li, Yupeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>64-65</volume><spage>217</spage><epage>232</epage><pages>217-232</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis. •Multi-sensor monitoring equipment health prognosis is analyzed.•Adaptive hidden semi-Markov model is proposed for health prognosis.•The proposed model and hazard rate equations are used to predict RUL.•The performance of the proposed methods by one case study is analyzed.•The proposed methods have better performance than other methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2015.03.029</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2015-12, Vol.64-65, p.217-232
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_1762106415
source Elsevier ScienceDirect Journals
subjects Adaptive training
Algorithms
Health
Hidden semi-Markov model
Hydraulics
Mathematical models
Mechanical systems
Monitoring
Prognosis
Regression
Remaining useful lifetime
title A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20using%20adaptive%20hidden%20semi-Markov%20model%20for%20multi-sensor%20monitoring%20equipment%20health%20prognosis&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Liu,%20Qinming&rft.date=2015-12-01&rft.volume=64-65&rft.spage=217&rft.epage=232&rft.pages=217-232&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2015.03.029&rft_dat=%3Cproquest_cross%3E1762106415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762106415&rft_id=info:pmid/&rft_els_id=S0888327015001570&rfr_iscdi=true