On Directed Versions of the Hajnal–Szemerédi Theorem

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr -packing. In this paper we prove the following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2015-11, Vol.24 (6), p.873-928
1. Verfasser: TREGLOWN, ANDREW
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 6
container_start_page 873
container_title Combinatorics, probability & computing
container_volume 24
creator TREGLOWN, ANDREW
description We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr -packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing. In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].
doi_str_mv 10.1017/S0963548315000036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762104761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548315000036</cupid><sourcerecordid>3831648391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-5469ae2bba26893c8221ec64d55769b48cc10c9a515c1816ad61bee6495563d43</originalsourceid><addsrcrecordid>eNp1kD1OAzEQhS0EEiFwALqVaGgWPPbaa5co_AQpUooE2pXXOyEb7U-wNwVU3IFTcA5uwknwKikQiGmmmO-9mXmEnAK9AArp5YxqyUWiOAgaiss9MoBE6piB5Ptk0I_jfn5IjrxfBUQISQcknTbRdenQdlhEj-h82TY-ahdRt8RobFaNqb7e3mevWKP7_CjKaL7E1mF9TA4WpvJ4sutD8nB7Mx-N48n07n50NYmtYLoLG6U2yPLcMKk0t4oxQCuTQohU6jxR1gK12ggQFhRIU0jIEWWiw3m8SPiQnG9916593qDvsrr0FqvKNNhufAapZECTVEJAz36hq3bjwgM9xajiXCoWKNhS1rXeO1xka1fWxr1kQLM-yuxPlEHDdxpT564snvCH9b-qbzrwdCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720833682</pqid></control><display><type>article</type><title>On Directed Versions of the Hajnal–Szemerédi Theorem</title><source>Cambridge Journals Online</source><creator>TREGLOWN, ANDREW</creator><creatorcontrib>TREGLOWN, ANDREW</creatorcontrib><description>We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr -packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing. In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548315000036</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analogue ; Asymptotic properties ; Combinatorial analysis ; Graph theory ; Graphs ; Reproduction ; Theorems ; Triangles</subject><ispartof>Combinatorics, probability &amp; computing, 2015-11, Vol.24 (6), p.873-928</ispartof><rights>Copyright © Cambridge University Press 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-5469ae2bba26893c8221ec64d55769b48cc10c9a515c1816ad61bee6495563d43</citedby><cites>FETCH-LOGICAL-c529t-5469ae2bba26893c8221ec64d55769b48cc10c9a515c1816ad61bee6495563d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548315000036/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>TREGLOWN, ANDREW</creatorcontrib><title>On Directed Versions of the Hajnal–Szemerédi Theorem</title><title>Combinatorics, probability &amp; computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr -packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing. In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].</description><subject>Analogue</subject><subject>Asymptotic properties</subject><subject>Combinatorial analysis</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Reproduction</subject><subject>Theorems</subject><subject>Triangles</subject><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1OAzEQhS0EEiFwALqVaGgWPPbaa5co_AQpUooE2pXXOyEb7U-wNwVU3IFTcA5uwknwKikQiGmmmO-9mXmEnAK9AArp5YxqyUWiOAgaiss9MoBE6piB5Ptk0I_jfn5IjrxfBUQISQcknTbRdenQdlhEj-h82TY-ahdRt8RobFaNqb7e3mevWKP7_CjKaL7E1mF9TA4WpvJ4sutD8nB7Mx-N48n07n50NYmtYLoLG6U2yPLcMKk0t4oxQCuTQohU6jxR1gK12ggQFhRIU0jIEWWiw3m8SPiQnG9916593qDvsrr0FqvKNNhufAapZECTVEJAz36hq3bjwgM9xajiXCoWKNhS1rXeO1xka1fWxr1kQLM-yuxPlEHDdxpT564snvCH9b-qbzrwdCo</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>TREGLOWN, ANDREW</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>On Directed Versions of the Hajnal–Szemerédi Theorem</title><author>TREGLOWN, ANDREW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-5469ae2bba26893c8221ec64d55769b48cc10c9a515c1816ad61bee6495563d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analogue</topic><topic>Asymptotic properties</topic><topic>Combinatorial analysis</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Reproduction</topic><topic>Theorems</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TREGLOWN, ANDREW</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TREGLOWN, ANDREW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Directed Versions of the Hajnal–Szemerédi Theorem</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>24</volume><issue>6</issue><spage>873</spage><epage>928</epage><pages>873-928</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr -packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing. In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548315000036</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 2015-11, Vol.24 (6), p.873-928
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_miscellaneous_1762104761
source Cambridge Journals Online
subjects Analogue
Asymptotic properties
Combinatorial analysis
Graph theory
Graphs
Reproduction
Theorems
Triangles
title On Directed Versions of the Hajnal–Szemerédi Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Directed%20Versions%20of%20the%20Hajnal%E2%80%93Szemer%C3%A9di%20Theorem&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=TREGLOWN,%20ANDREW&rft.date=2015-11-01&rft.volume=24&rft.issue=6&rft.spage=873&rft.epage=928&rft.pages=873-928&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548315000036&rft_dat=%3Cproquest_cross%3E3831648391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720833682&rft_id=info:pmid/&rft_cupid=10_1017_S0963548315000036&rfr_iscdi=true