Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique

In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2015-05, Vol.54 (9), p.2496-2503
Hauptverfasser: Dulkadiroglu, Hakan, Seckin, Galip, Orhon, Derin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2503
container_issue 9
container_start_page 2496
container_title Desalination and water treatment
container_volume 54
creator Dulkadiroglu, Hakan
Seckin, Galip
Orhon, Derin
description In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.
doi_str_mv 10.1080/19443994.2014.902336
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762099142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624066578</els_id><sourcerecordid>1762099142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</originalsourceid><addsrcrecordid>eNqNkU1PXCEUhm-amtSo_8AFiRs3M-Xr8rExaUxrm4zpRteEgUPF3gEFrk0X_e_lOjUxXTRlcw7wvC_hvMNwSvCaYIXfE80505qvKSZ8rTFlTLwZDpfjFdNKvH3VvxtOar3HfY1cjpweDr-us4cppm8oxVZsA-RycpCWPuZUUUzIol1-WpAteFThcYbknre2uTu0jTnEaYcKWNdyQXNd7myXlRZDdNFOKMFcnkv7kct31MDdpdh9joeDYKcKJ3_q0XD76ePN5efV5uvVl8sPm5XjErcVY1RakF4rq33AQow4jEqNlkjBPPfbUUuHpQ9KWRG2wSnNOGPaekVpJ9nRcL73fSi5P1ub2cXqYJpsgjxX030o1ppw-h8olUJSgmVHz_5C7_NcUv-IIUL1GKQSpFN8T7mSay0QzEOJO1t-GoLNkqB5SdAsCZp9gl12sZdBn8tThGKqi33w4GMB14zP8d8GvwHd4aJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683367861</pqid></control><display><type>article</type><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><source>Alma/SFX Local Collection</source><creator>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</creator><creatorcontrib>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</creatorcontrib><description>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2014.902336</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Ammonium ; Artificial neural network ; Biodegradation ; Biofilms ; Bioreactors ; Computer simulation ; Modeling ; Moving bed sequencing batch biofilm reactor ; Multi-layer perceptron ; Multilayers ; Neural networks ; Nitrates ; Nitrification ; Permissible error ; Reactors ; Sequencing</subject><ispartof>Desalination and water treatment, 2015-05, Vol.54 (9), p.2496-2503</ispartof><rights>2014 Elsevier Inc.</rights><rights>2014 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</citedby><cites>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dulkadiroglu, Hakan</creatorcontrib><creatorcontrib>Seckin, Galip</creatorcontrib><creatorcontrib>Orhon, Derin</creatorcontrib><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><title>Desalination and water treatment</title><description>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</description><subject>Ammonium</subject><subject>Artificial neural network</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Computer simulation</subject><subject>Modeling</subject><subject>Moving bed sequencing batch biofilm reactor</subject><subject>Multi-layer perceptron</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Permissible error</subject><subject>Reactors</subject><subject>Sequencing</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PXCEUhm-amtSo_8AFiRs3M-Xr8rExaUxrm4zpRteEgUPF3gEFrk0X_e_lOjUxXTRlcw7wvC_hvMNwSvCaYIXfE80505qvKSZ8rTFlTLwZDpfjFdNKvH3VvxtOar3HfY1cjpweDr-us4cppm8oxVZsA-RycpCWPuZUUUzIol1-WpAteFThcYbknre2uTu0jTnEaYcKWNdyQXNd7myXlRZDdNFOKMFcnkv7kct31MDdpdh9joeDYKcKJ3_q0XD76ePN5efV5uvVl8sPm5XjErcVY1RakF4rq33AQow4jEqNlkjBPPfbUUuHpQ9KWRG2wSnNOGPaekVpJ9nRcL73fSi5P1ub2cXqYJpsgjxX030o1ppw-h8olUJSgmVHz_5C7_NcUv-IIUL1GKQSpFN8T7mSay0QzEOJO1t-GoLNkqB5SdAsCZp9gl12sZdBn8tThGKqi33w4GMB14zP8d8GvwHd4aJf</recordid><startdate>20150529</startdate><enddate>20150529</enddate><creator>Dulkadiroglu, Hakan</creator><creator>Seckin, Galip</creator><creator>Orhon, Derin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150529</creationdate><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><author>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ammonium</topic><topic>Artificial neural network</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Computer simulation</topic><topic>Modeling</topic><topic>Moving bed sequencing batch biofilm reactor</topic><topic>Multi-layer perceptron</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Permissible error</topic><topic>Reactors</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dulkadiroglu, Hakan</creatorcontrib><creatorcontrib>Seckin, Galip</creatorcontrib><creatorcontrib>Orhon, Derin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dulkadiroglu, Hakan</au><au>Seckin, Galip</au><au>Orhon, Derin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</atitle><jtitle>Desalination and water treatment</jtitle><date>2015-05-29</date><risdate>2015</risdate><volume>54</volume><issue>9</issue><spage>2496</spage><epage>2503</epage><pages>2496-2503</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2014.902336</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2015-05, Vol.54 (9), p.2496-2503
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1762099142
source Alma/SFX Local Collection
subjects Ammonium
Artificial neural network
Biodegradation
Biofilms
Bioreactors
Computer simulation
Modeling
Moving bed sequencing batch biofilm reactor
Multi-layer perceptron
Multilayers
Neural networks
Nitrates
Nitrification
Permissible error
Reactors
Sequencing
title Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20nitrate%20concentrations%20in%20a%20moving%20bed%20sequencing%20batch%20biofilm%20reactor%20using%20an%20artificial%20neural%20network%20technique&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Dulkadiroglu,%20Hakan&rft.date=2015-05-29&rft.volume=54&rft.issue=9&rft.spage=2496&rft.epage=2503&rft.pages=2496-2503&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2014.902336&rft_dat=%3Cproquest_cross%3E1762099142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683367861&rft_id=info:pmid/&rft_els_id=S1944398624066578&rfr_iscdi=true