Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique
In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evalu...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2015-05, Vol.54 (9), p.2496-2503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2503 |
---|---|
container_issue | 9 |
container_start_page | 2496 |
container_title | Desalination and water treatment |
container_volume | 54 |
creator | Dulkadiroglu, Hakan Seckin, Galip Orhon, Derin |
description | In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results. |
doi_str_mv | 10.1080/19443994.2014.902336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762099142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624066578</els_id><sourcerecordid>1762099142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</originalsourceid><addsrcrecordid>eNqNkU1PXCEUhm-amtSo_8AFiRs3M-Xr8rExaUxrm4zpRteEgUPF3gEFrk0X_e_lOjUxXTRlcw7wvC_hvMNwSvCaYIXfE80505qvKSZ8rTFlTLwZDpfjFdNKvH3VvxtOar3HfY1cjpweDr-us4cppm8oxVZsA-RycpCWPuZUUUzIol1-WpAteFThcYbknre2uTu0jTnEaYcKWNdyQXNd7myXlRZDdNFOKMFcnkv7kct31MDdpdh9joeDYKcKJ3_q0XD76ePN5efV5uvVl8sPm5XjErcVY1RakF4rq33AQow4jEqNlkjBPPfbUUuHpQ9KWRG2wSnNOGPaekVpJ9nRcL73fSi5P1ub2cXqYJpsgjxX030o1ppw-h8olUJSgmVHz_5C7_NcUv-IIUL1GKQSpFN8T7mSay0QzEOJO1t-GoLNkqB5SdAsCZp9gl12sZdBn8tThGKqi33w4GMB14zP8d8GvwHd4aJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683367861</pqid></control><display><type>article</type><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><source>Alma/SFX Local Collection</source><creator>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</creator><creatorcontrib>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</creatorcontrib><description>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2014.902336</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Ammonium ; Artificial neural network ; Biodegradation ; Biofilms ; Bioreactors ; Computer simulation ; Modeling ; Moving bed sequencing batch biofilm reactor ; Multi-layer perceptron ; Multilayers ; Neural networks ; Nitrates ; Nitrification ; Permissible error ; Reactors ; Sequencing</subject><ispartof>Desalination and water treatment, 2015-05, Vol.54 (9), p.2496-2503</ispartof><rights>2014 Elsevier Inc.</rights><rights>2014 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</citedby><cites>FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dulkadiroglu, Hakan</creatorcontrib><creatorcontrib>Seckin, Galip</creatorcontrib><creatorcontrib>Orhon, Derin</creatorcontrib><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><title>Desalination and water treatment</title><description>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</description><subject>Ammonium</subject><subject>Artificial neural network</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Computer simulation</subject><subject>Modeling</subject><subject>Moving bed sequencing batch biofilm reactor</subject><subject>Multi-layer perceptron</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Nitrates</subject><subject>Nitrification</subject><subject>Permissible error</subject><subject>Reactors</subject><subject>Sequencing</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PXCEUhm-amtSo_8AFiRs3M-Xr8rExaUxrm4zpRteEgUPF3gEFrk0X_e_lOjUxXTRlcw7wvC_hvMNwSvCaYIXfE80505qvKSZ8rTFlTLwZDpfjFdNKvH3VvxtOar3HfY1cjpweDr-us4cppm8oxVZsA-RycpCWPuZUUUzIol1-WpAteFThcYbknre2uTu0jTnEaYcKWNdyQXNd7myXlRZDdNFOKMFcnkv7kct31MDdpdh9joeDYKcKJ3_q0XD76ePN5efV5uvVl8sPm5XjErcVY1RakF4rq33AQow4jEqNlkjBPPfbUUuHpQ9KWRG2wSnNOGPaekVpJ9nRcL73fSi5P1ub2cXqYJpsgjxX030o1ppw-h8olUJSgmVHz_5C7_NcUv-IIUL1GKQSpFN8T7mSay0QzEOJO1t-GoLNkqB5SdAsCZp9gl12sZdBn8tThGKqi33w4GMB14zP8d8GvwHd4aJf</recordid><startdate>20150529</startdate><enddate>20150529</enddate><creator>Dulkadiroglu, Hakan</creator><creator>Seckin, Galip</creator><creator>Orhon, Derin</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150529</creationdate><title>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</title><author>Dulkadiroglu, Hakan ; Seckin, Galip ; Orhon, Derin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-3327ae7d98a9df06650f5885a1763d4db597c07df88a6fbfc8934339ad822f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ammonium</topic><topic>Artificial neural network</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Computer simulation</topic><topic>Modeling</topic><topic>Moving bed sequencing batch biofilm reactor</topic><topic>Multi-layer perceptron</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Nitrates</topic><topic>Nitrification</topic><topic>Permissible error</topic><topic>Reactors</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dulkadiroglu, Hakan</creatorcontrib><creatorcontrib>Seckin, Galip</creatorcontrib><creatorcontrib>Orhon, Derin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dulkadiroglu, Hakan</au><au>Seckin, Galip</au><au>Orhon, Derin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique</atitle><jtitle>Desalination and water treatment</jtitle><date>2015-05-29</date><risdate>2015</risdate><volume>54</volume><issue>9</issue><spage>2496</spage><epage>2503</epage><pages>2496-2503</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>In this study, the performance data of a moving-bed sequencing batch biofilm reactor (MBSBBR) treating synthetic wastewater were simulated using multi-layer perceptron neural-network technique. Multi-linear regression (MLR) technique is also used for a comparison. The performance of MBSBBR was evaluated using these models for a set of experimental results obtained from a model reactor operated with different cycle times and temperatures. The experimental data were retrieved from a previous reported work. Operational time, temperature, ammonium nitrogen, and pH were used as inputs for modeling, whereas nitrate concentration was the output variable. The results of the models were compared using statistical criteria, such as mean square error, mean absolute error, mean absolute relative error, and determination coefficient (R2). The results showed that the multi-layer perceptron neural-network produced more accurate results than those of MLR, although the latter gave reasonable results.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2014.902336</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-3986 |
ispartof | Desalination and water treatment, 2015-05, Vol.54 (9), p.2496-2503 |
issn | 1944-3986 1944-3994 1944-3986 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762099142 |
source | Alma/SFX Local Collection |
subjects | Ammonium Artificial neural network Biodegradation Biofilms Bioreactors Computer simulation Modeling Moving bed sequencing batch biofilm reactor Multi-layer perceptron Multilayers Neural networks Nitrates Nitrification Permissible error Reactors Sequencing |
title | Modeling nitrate concentrations in a moving bed sequencing batch biofilm reactor using an artificial neural network technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20nitrate%20concentrations%20in%20a%20moving%20bed%20sequencing%20batch%20biofilm%20reactor%20using%20an%20artificial%20neural%20network%20technique&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Dulkadiroglu,%20Hakan&rft.date=2015-05-29&rft.volume=54&rft.issue=9&rft.spage=2496&rft.epage=2503&rft.pages=2496-2503&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2014.902336&rft_dat=%3Cproquest_cross%3E1762099142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683367861&rft_id=info:pmid/&rft_els_id=S1944398624066578&rfr_iscdi=true |