A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem

A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-01, Vol.292, p.257-278
Hauptverfasser: Gudi, Thirupathi, Porwal, Kamana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue
container_start_page 257
container_title Journal of computational and applied mathematics
container_volume 292
creator Gudi, Thirupathi
Porwal, Kamana
description A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator.
doi_str_mv 10.1016/j.cam.2015.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762094946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715003702</els_id><sourcerecordid>1762094946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-da9ed1776f61bb7354c3fd53aa5de717ff79a8d97e61ec44c1e69a8d433fb893</originalsourceid><addsrcrecordid>eNp9kEFPAyEQhYnRxFr9Ad44etkVCoXdeGoarSZNPNiDN8LCYKm7SwVq4r-Xpp49TTJ5b-Z7D6FbSmpKqLjf1UYP9YzQeU1kTUhzhia0kW1FpWzO0YQwKSvCZ_ISXaW0I4SIlvIJel_gfUgZog_RY4gxRAwp-0FnSDg4bH0yYcx-PIRDwivdQ_z0Ix4gb4NN2BV93gJ-8x9juTB6vI-h62G4RhdO9wlu_uYUbZ4eN8vnav26elku1pVhjOTK6hZsYRRO0K6TbM4Nc3bOtJ5bkFQ6J1vd2FaCoGA4NxTEccEZc13Tsim6O50tb78OhVwNBRj6Xo9QgBWVYkZa3nJRpPQkNTGkFMGpfSw544-iRB1LVDtVSlTHEhWRqpRYPA8nD5QI3x6iSsbDaMD6CCYrG_w_7l8jc3wD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762094946</pqid></control><display><type>article</type><title>A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gudi, Thirupathi ; Porwal, Kamana</creator><creatorcontrib>Gudi, Thirupathi ; Porwal, Kamana</creatorcontrib><description>A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.07.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>A posteriori error estimate ; Computation ; Discontinuous Galerkin ; Error analysis ; Errors ; Estimates ; Estimators ; Finite element ; Galerkin methods ; Lagrange multiplier ; Mathematical models ; Preserving ; Signorini problem ; Variational inequalities</subject><ispartof>Journal of computational and applied mathematics, 2016-01, Vol.292, p.257-278</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-da9ed1776f61bb7354c3fd53aa5de717ff79a8d97e61ec44c1e69a8d433fb893</citedby><cites>FETCH-LOGICAL-c330t-da9ed1776f61bb7354c3fd53aa5de717ff79a8d97e61ec44c1e69a8d433fb893</cites><orcidid>0000-0002-5713-9498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042715003702$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Gudi, Thirupathi</creatorcontrib><creatorcontrib>Porwal, Kamana</creatorcontrib><title>A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem</title><title>Journal of computational and applied mathematics</title><description>A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator.</description><subject>A posteriori error estimate</subject><subject>Computation</subject><subject>Discontinuous Galerkin</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Finite element</subject><subject>Galerkin methods</subject><subject>Lagrange multiplier</subject><subject>Mathematical models</subject><subject>Preserving</subject><subject>Signorini problem</subject><subject>Variational inequalities</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPAyEQhYnRxFr9Ad44etkVCoXdeGoarSZNPNiDN8LCYKm7SwVq4r-Xpp49TTJ5b-Z7D6FbSmpKqLjf1UYP9YzQeU1kTUhzhia0kW1FpWzO0YQwKSvCZ_ISXaW0I4SIlvIJel_gfUgZog_RY4gxRAwp-0FnSDg4bH0yYcx-PIRDwivdQ_z0Ix4gb4NN2BV93gJ-8x9juTB6vI-h62G4RhdO9wlu_uYUbZ4eN8vnav26elku1pVhjOTK6hZsYRRO0K6TbM4Nc3bOtJ5bkFQ6J1vd2FaCoGA4NxTEccEZc13Tsim6O50tb78OhVwNBRj6Xo9QgBWVYkZa3nJRpPQkNTGkFMGpfSw544-iRB1LVDtVSlTHEhWRqpRYPA8nD5QI3x6iSsbDaMD6CCYrG_w_7l8jc3wD</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Gudi, Thirupathi</creator><creator>Porwal, Kamana</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5713-9498</orcidid></search><sort><creationdate>20160115</creationdate><title>A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem</title><author>Gudi, Thirupathi ; Porwal, Kamana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-da9ed1776f61bb7354c3fd53aa5de717ff79a8d97e61ec44c1e69a8d433fb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A posteriori error estimate</topic><topic>Computation</topic><topic>Discontinuous Galerkin</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Finite element</topic><topic>Galerkin methods</topic><topic>Lagrange multiplier</topic><topic>Mathematical models</topic><topic>Preserving</topic><topic>Signorini problem</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudi, Thirupathi</creatorcontrib><creatorcontrib>Porwal, Kamana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudi, Thirupathi</au><au>Porwal, Kamana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>292</volume><spage>257</spage><epage>278</epage><pages>257-278</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.07.008</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5713-9498</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-01, Vol.292, p.257-278
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1762094946
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects A posteriori error estimate
Computation
Discontinuous Galerkin
Error analysis
Errors
Estimates
Estimators
Finite element
Galerkin methods
Lagrange multiplier
Mathematical models
Preserving
Signorini problem
Variational inequalities
title A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20error%20estimates%20of%20discontinuous%20Galerkin%20methods%20for%20the%20Signorini%20problem&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Gudi,%20Thirupathi&rft.date=2016-01-15&rft.volume=292&rft.spage=257&rft.epage=278&rft.pages=257-278&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.07.008&rft_dat=%3Cproquest_cross%3E1762094946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762094946&rft_id=info:pmid/&rft_els_id=S0377042715003702&rfr_iscdi=true