A reduced order method for Allen–Cahn equations
In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2016-01, Vol.292, p.213-229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | |
container_start_page | 213 |
container_title | Journal of computational and applied mathematics |
container_volume | 292 |
creator | Song, Huailing Jiang, Lijian Li, Qiuqi |
description | In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations. |
doi_str_mv | 10.1016/j.cam.2015.07.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762094865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715003714</els_id><sourcerecordid>1762094865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGwZWRLujRP_iKmq-JMqscBspfa1miqNWztBYuMdeEOehKAyM53lfEc6H2PXCAUCitttYZtdUQLWBcgCQJ-wGSqpc5RSnbIZcClzqEp5zi5S2gKA0FjNGC6ySG605LIQHcVsR8MmuMyHmC26jvrvz69ls-kzOozN0IY-XbIz33SJrv5yzt4e7l-XT_nq5fF5uVjllks-5CiU8sDXvqyruhYotCh9bSuHyq8d-NIpTcpxXSEncrVVopakuRVcIF9rPmc3x919DIeR0mB2bbLUdU1PYUwGpShBVxM2VfFYtTGkFMmbfWx3TfwwCOZXj9maSY_51WNAmknPxNwdGZo-vLcUTbIt9ZOINpIdjAvtP_QPax1sIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762094865</pqid></control><display><type>article</type><title>A reduced order method for Allen–Cahn equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</creator><creatorcontrib>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</creatorcontrib><description>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.07.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allen–Cahn equations ; Computation ; Discrete empirical interpolation ; Empirical equations ; Interpolation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Proper orthogonal decomposition ; Reduced order ; Stability</subject><ispartof>Journal of computational and applied mathematics, 2016-01, Vol.292, p.213-229</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</citedby><cites>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042715003714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Song, Huailing</creatorcontrib><creatorcontrib>Jiang, Lijian</creatorcontrib><creatorcontrib>Li, Qiuqi</creatorcontrib><title>A reduced order method for Allen–Cahn equations</title><title>Journal of computational and applied mathematics</title><description>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</description><subject>Allen–Cahn equations</subject><subject>Computation</subject><subject>Discrete empirical interpolation</subject><subject>Empirical equations</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order</subject><subject>Stability</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAGwZWRLujRP_iKmq-JMqscBspfa1miqNWztBYuMdeEOehKAyM53lfEc6H2PXCAUCitttYZtdUQLWBcgCQJ-wGSqpc5RSnbIZcClzqEp5zi5S2gKA0FjNGC6ySG605LIQHcVsR8MmuMyHmC26jvrvz69ls-kzOozN0IY-XbIz33SJrv5yzt4e7l-XT_nq5fF5uVjllks-5CiU8sDXvqyruhYotCh9bSuHyq8d-NIpTcpxXSEncrVVopakuRVcIF9rPmc3x919DIeR0mB2bbLUdU1PYUwGpShBVxM2VfFYtTGkFMmbfWx3TfwwCOZXj9maSY_51WNAmknPxNwdGZo-vLcUTbIt9ZOINpIdjAvtP_QPax1sIA</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Song, Huailing</creator><creator>Jiang, Lijian</creator><creator>Li, Qiuqi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160115</creationdate><title>A reduced order method for Allen–Cahn equations</title><author>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Allen–Cahn equations</topic><topic>Computation</topic><topic>Discrete empirical interpolation</topic><topic>Empirical equations</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Huailing</creatorcontrib><creatorcontrib>Jiang, Lijian</creatorcontrib><creatorcontrib>Li, Qiuqi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Huailing</au><au>Jiang, Lijian</au><au>Li, Qiuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reduced order method for Allen–Cahn equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>292</volume><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.07.009</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2016-01, Vol.292, p.213-229 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762094865 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Allen–Cahn equations Computation Discrete empirical interpolation Empirical equations Interpolation Mathematical analysis Mathematical models Nonlinearity Proper orthogonal decomposition Reduced order Stability |
title | A reduced order method for Allen–Cahn equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reduced%20order%20method%20for%20Allen%E2%80%93Cahn%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Song,%20Huailing&rft.date=2016-01-15&rft.volume=292&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.07.009&rft_dat=%3Cproquest_cross%3E1762094865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762094865&rft_id=info:pmid/&rft_els_id=S0377042715003714&rfr_iscdi=true |