A reduced order method for Allen–Cahn equations

In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-01, Vol.292, p.213-229
Hauptverfasser: Song, Huailing, Jiang, Lijian, Li, Qiuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue
container_start_page 213
container_title Journal of computational and applied mathematics
container_volume 292
creator Song, Huailing
Jiang, Lijian
Li, Qiuqi
description In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.
doi_str_mv 10.1016/j.cam.2015.07.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762094865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042715003714</els_id><sourcerecordid>1762094865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGwZWRLujRP_iKmq-JMqscBspfa1miqNWztBYuMdeEOehKAyM53lfEc6H2PXCAUCitttYZtdUQLWBcgCQJ-wGSqpc5RSnbIZcClzqEp5zi5S2gKA0FjNGC6ySG605LIQHcVsR8MmuMyHmC26jvrvz69ls-kzOozN0IY-XbIz33SJrv5yzt4e7l-XT_nq5fF5uVjllks-5CiU8sDXvqyruhYotCh9bSuHyq8d-NIpTcpxXSEncrVVopakuRVcIF9rPmc3x919DIeR0mB2bbLUdU1PYUwGpShBVxM2VfFYtTGkFMmbfWx3TfwwCOZXj9maSY_51WNAmknPxNwdGZo-vLcUTbIt9ZOINpIdjAvtP_QPax1sIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762094865</pqid></control><display><type>article</type><title>A reduced order method for Allen–Cahn equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</creator><creatorcontrib>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</creatorcontrib><description>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.07.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Allen–Cahn equations ; Computation ; Discrete empirical interpolation ; Empirical equations ; Interpolation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Proper orthogonal decomposition ; Reduced order ; Stability</subject><ispartof>Journal of computational and applied mathematics, 2016-01, Vol.292, p.213-229</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</citedby><cites>FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042715003714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Song, Huailing</creatorcontrib><creatorcontrib>Jiang, Lijian</creatorcontrib><creatorcontrib>Li, Qiuqi</creatorcontrib><title>A reduced order method for Allen–Cahn equations</title><title>Journal of computational and applied mathematics</title><description>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</description><subject>Allen–Cahn equations</subject><subject>Computation</subject><subject>Discrete empirical interpolation</subject><subject>Empirical equations</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Proper orthogonal decomposition</subject><subject>Reduced order</subject><subject>Stability</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAGwZWRLujRP_iKmq-JMqscBspfa1miqNWztBYuMdeEOehKAyM53lfEc6H2PXCAUCitttYZtdUQLWBcgCQJ-wGSqpc5RSnbIZcClzqEp5zi5S2gKA0FjNGC6ySG605LIQHcVsR8MmuMyHmC26jvrvz69ls-kzOozN0IY-XbIz33SJrv5yzt4e7l-XT_nq5fF5uVjllks-5CiU8sDXvqyruhYotCh9bSuHyq8d-NIpTcpxXSEncrVVopakuRVcIF9rPmc3x919DIeR0mB2bbLUdU1PYUwGpShBVxM2VfFYtTGkFMmbfWx3TfwwCOZXj9maSY_51WNAmknPxNwdGZo-vLcUTbIt9ZOINpIdjAvtP_QPax1sIA</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Song, Huailing</creator><creator>Jiang, Lijian</creator><creator>Li, Qiuqi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160115</creationdate><title>A reduced order method for Allen–Cahn equations</title><author>Song, Huailing ; Jiang, Lijian ; Li, Qiuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1688f03bf25455616962f5c4d18fbd0f2d89e8d39413eed5c8657e93c63613b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Allen–Cahn equations</topic><topic>Computation</topic><topic>Discrete empirical interpolation</topic><topic>Empirical equations</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Proper orthogonal decomposition</topic><topic>Reduced order</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Huailing</creatorcontrib><creatorcontrib>Jiang, Lijian</creatorcontrib><creatorcontrib>Li, Qiuqi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Huailing</au><au>Jiang, Lijian</au><au>Li, Qiuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reduced order method for Allen–Cahn equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>292</volume><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this article, we present a reduced order method for modeling and computing Allen–Cahn equations. A global basis method is used in the discretized system of the Allen–Cahn equations and Proper Orthogonal Decomposition (POD) method is utilized to reduce the global basis. To treat the difficulty of nonlinearity for Allen–Cahn equations, we apply Discrete Empirical Interpolation method (DEIM) to the nonlinear term from the discretization system. A reduced order method is developed by integrating POD and DEIM. It is well-known that the Allen–Cahn equations have a nonlinear stability property, i.e., the free-energy functional decreases with respect to time. The discretized Allen–Cahn system modeled by the POD–DEIM reduced order method can inherit the nonlinear stability of the continuous model. The computation efficiency is significantly enhanced by using the reduced order method. A few numerical results are presented to illustrate the performance of the reduced order method for deterministic Allen–Cahn equations and stochastic Allen–Cahn equations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.07.009</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-01, Vol.292, p.213-229
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1762094865
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Allen–Cahn equations
Computation
Discrete empirical interpolation
Empirical equations
Interpolation
Mathematical analysis
Mathematical models
Nonlinearity
Proper orthogonal decomposition
Reduced order
Stability
title A reduced order method for Allen–Cahn equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reduced%20order%20method%20for%20Allen%E2%80%93Cahn%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Song,%20Huailing&rft.date=2016-01-15&rft.volume=292&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.07.009&rft_dat=%3Cproquest_cross%3E1762094865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762094865&rft_id=info:pmid/&rft_els_id=S0377042715003714&rfr_iscdi=true