Extended formulations, nonnegative factorizations, and randomized communication protocols
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π ( Q ) = P . These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2015-10, Vol.153 (1), p.75-94 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Mathematical programming |
container_volume | 153 |
creator | Faenza, Yuri Fiorini, Samuel Grappe, Roland Tiwary, Hans Raj |
description | An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466,
1991
) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of
P
equals the nonnegative rank of its slack matrix
S
. Moreover, Yannakakis also shows that the nonnegative rank of
S
is at most
2
c
, where
c
is the complexity of any
deterministic
protocol computing
S
. In this paper, we show that the latter result can be strengthened when we allow protocols to be
randomized
. In particular, we prove that the base-
2
logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-
2
logarithm of the smallest size of an extended formulation of a polytope
P
equals the minimum complexity of a randomized communication protocol computing the slack matrix of
P
in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation. |
doi_str_mv | 10.1007/s10107-014-0755-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762092613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3804436461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503</originalsourceid><addsrcrecordid>eNp1kEFr3DAQhUVpoJtNfkBuhlx6iNMZSxrZx7IkbWChl_aQk9DK8uLFlraSHdL99dFmGyiBXmYY5ntvhsfYFcItAqgvCQFBlYCiBCVlyT-wBQpOpSBBH9kCoJKlJIRP7DylHQAgr-sFe7x7npxvXVt0IY7zYKY--HRT-OC92-bpyRWdsVOI_eFtZ3xbxFzC2B-y0IZxnH1vX9fFPoYp2DCkC3bWmSG5y799yX7d3_1cfS_XP749rL6uSyuwmUpFHOuK1KZBRIvUmZqU4U1bScHFxpJsnCCusN4o2QARtq1xhGQsbkACX7LPJ998-ffs0qTHPlk3DMa7MCeNiipoKkKe0et36C7M0efvMpXP1yRklSk8UTaGlKLr9D72o4l_NII-hq1PYesctj6GrY_O1UmTMuu3Lv7j_F_RC3RhgXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1711186452</pqid></control><display><type>article</type><title>Extended formulations, nonnegative factorizations, and randomized communication protocols</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Faenza, Yuri ; Fiorini, Samuel ; Grappe, Roland ; Tiwary, Hans Raj</creator><creatorcontrib>Faenza, Yuri ; Fiorini, Samuel ; Grappe, Roland ; Tiwary, Hans Raj</creatorcontrib><description>An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466,
1991
) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of
P
equals the nonnegative rank of its slack matrix
S
. Moreover, Yannakakis also shows that the nonnegative rank of
S
is at most
2
c
, where
c
is the complexity of any
deterministic
protocol computing
S
. In this paper, we show that the latter result can be strengthened when we allow protocols to be
randomized
. In particular, we prove that the base-
2
logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-
2
logarithm of the smallest size of an extended formulation of a polytope
P
equals the minimum complexity of a randomized communication protocol computing the slack matrix of
P
in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-014-0755-3</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Communication ; Complexity ; Computation ; Factorization ; Full Length Paper ; Geometry ; Graphs ; Logarithms ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Optimization ; Optimization algorithms ; Polyhedra ; Polyhedrons ; Polytopes ; Protocol ; Studies ; Theorems ; Theoretical</subject><ispartof>Mathematical programming, 2015-10, Vol.153 (1), p.75-94</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014</rights><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503</citedby><cites>FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-014-0755-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-014-0755-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Faenza, Yuri</creatorcontrib><creatorcontrib>Fiorini, Samuel</creatorcontrib><creatorcontrib>Grappe, Roland</creatorcontrib><creatorcontrib>Tiwary, Hans Raj</creatorcontrib><title>Extended formulations, nonnegative factorizations, and randomized communication protocols</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466,
1991
) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of
P
equals the nonnegative rank of its slack matrix
S
. Moreover, Yannakakis also shows that the nonnegative rank of
S
is at most
2
c
, where
c
is the complexity of any
deterministic
protocol computing
S
. In this paper, we show that the latter result can be strengthened when we allow protocols to be
randomized
. In particular, we prove that the base-
2
logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-
2
logarithm of the smallest size of an extended formulation of a polytope
P
equals the minimum complexity of a randomized communication protocol computing the slack matrix of
P
in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.</description><subject>Algorithms</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Communication</subject><subject>Complexity</subject><subject>Computation</subject><subject>Factorization</subject><subject>Full Length Paper</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Logarithms</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Polyhedra</subject><subject>Polyhedrons</subject><subject>Polytopes</subject><subject>Protocol</subject><subject>Studies</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFr3DAQhUVpoJtNfkBuhlx6iNMZSxrZx7IkbWChl_aQk9DK8uLFlraSHdL99dFmGyiBXmYY5ntvhsfYFcItAqgvCQFBlYCiBCVlyT-wBQpOpSBBH9kCoJKlJIRP7DylHQAgr-sFe7x7npxvXVt0IY7zYKY--HRT-OC92-bpyRWdsVOI_eFtZ3xbxFzC2B-y0IZxnH1vX9fFPoYp2DCkC3bWmSG5y799yX7d3_1cfS_XP749rL6uSyuwmUpFHOuK1KZBRIvUmZqU4U1bScHFxpJsnCCusN4o2QARtq1xhGQsbkACX7LPJ998-ffs0qTHPlk3DMa7MCeNiipoKkKe0et36C7M0efvMpXP1yRklSk8UTaGlKLr9D72o4l_NII-hq1PYesctj6GrY_O1UmTMuu3Lv7j_F_RC3RhgXI</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Faenza, Yuri</creator><creator>Fiorini, Samuel</creator><creator>Grappe, Roland</creator><creator>Tiwary, Hans Raj</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151001</creationdate><title>Extended formulations, nonnegative factorizations, and randomized communication protocols</title><author>Faenza, Yuri ; Fiorini, Samuel ; Grappe, Roland ; Tiwary, Hans Raj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-76318267b9111c16fa867a39d25434bc659e463718b7590661ddae616ac1b0503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Communication</topic><topic>Complexity</topic><topic>Computation</topic><topic>Factorization</topic><topic>Full Length Paper</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Logarithms</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Polyhedra</topic><topic>Polyhedrons</topic><topic>Polytopes</topic><topic>Protocol</topic><topic>Studies</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faenza, Yuri</creatorcontrib><creatorcontrib>Fiorini, Samuel</creatorcontrib><creatorcontrib>Grappe, Roland</creatorcontrib><creatorcontrib>Tiwary, Hans Raj</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faenza, Yuri</au><au>Fiorini, Samuel</au><au>Grappe, Roland</au><au>Tiwary, Hans Raj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended formulations, nonnegative factorizations, and randomized communication protocols</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>153</volume><issue>1</issue><spage>75</spage><epage>94</epage><pages>75-94</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>An extended formulation of a polyhedron
P
is a linear description of a polyhedron
Q
together with a linear map
π
such that
π
(
Q
)
=
P
. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466,
1991
) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of
P
equals the nonnegative rank of its slack matrix
S
. Moreover, Yannakakis also shows that the nonnegative rank of
S
is at most
2
c
, where
c
is the complexity of any
deterministic
protocol computing
S
. In this paper, we show that the latter result can be strengthened when we allow protocols to be
randomized
. In particular, we prove that the base-
2
logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-
2
logarithm of the smallest size of an extended formulation of a polytope
P
equals the minimum complexity of a randomized communication protocol computing the slack matrix of
P
in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-014-0755-3</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2015-10, Vol.153 (1), p.75-94 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762092613 |
source | EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algorithms Calculus of Variations and Optimal Control Optimization Combinatorics Communication Complexity Computation Factorization Full Length Paper Geometry Graphs Logarithms Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Optimization algorithms Polyhedra Polyhedrons Polytopes Protocol Studies Theorems Theoretical |
title | Extended formulations, nonnegative factorizations, and randomized communication protocols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20formulations,%20nonnegative%20factorizations,%20and%20randomized%20communication%20protocols&rft.jtitle=Mathematical%20programming&rft.au=Faenza,%20Yuri&rft.date=2015-10-01&rft.volume=153&rft.issue=1&rft.spage=75&rft.epage=94&rft.pages=75-94&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-014-0755-3&rft_dat=%3Cproquest_cross%3E3804436461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1711186452&rft_id=info:pmid/&rfr_iscdi=true |