Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties

In this article, ZnO nanostructures with diverse morphologies have been synthesized via a simple, rapid and cost effective solid state thermal decomposition method. The as-synthesized ZnO nanostructures were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2015-11, Vol.26 (11), p.8367-8379
Hauptverfasser: Kadam, A. N., Dhabbe, R. S., Kokate, M. R., Gavade, N. L., Waghmare, P. R., Garadkar, K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8379
container_issue 11
container_start_page 8367
container_title Journal of materials science. Materials in electronics
container_volume 26
creator Kadam, A. N.
Dhabbe, R. S.
Kokate, M. R.
Gavade, N. L.
Waghmare, P. R.
Garadkar, K. M.
description In this article, ZnO nanostructures with diverse morphologies have been synthesized via a simple, rapid and cost effective solid state thermal decomposition method. The as-synthesized ZnO nanostructures were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), UV–Vis. diffuse reflectance spectra (UV–Vis-DRS) and photoluminescence (PL). The XRD patterns and HR-TEM image indicated a hexagonal wurtzite structure of ZnO. The SEM images of ZnO samples show the different morphologies such as nanowire, nanorods, spherical and irregular microsphere at different calcination temperatures. Room temperature PL spectra of the samples exhibited characteristics blue and green emission bands in accordance with calcination temperature. Moreover, photocatalytic as well as antimicrobial activities were evaluated using ZnO synthesized at different calcination temperatures. The effects of calcination temperature, catalyst loading and pH on the photodegradation efficiency were systematically studied. A highest (99 %) photocatalytic activity of ZnO nanorods towards the Acid Green 25 (AG-25) was achieved within 35 min at optimal conditions under UV light. As-synthesized ZnO nanorods are found to be more efficient than TiO 2 (P25) towards the degradation of AG-25. It was found that the antimicrobial activity of ZnO nanorods (13 mm) obtained at 300 °C showed significantly higher inhibition efficiencies than the other samples. The mineralization of AG-25 was confirmed from a reduction of 85 % the chemical oxygen demand within 35 min. In addition, ZnO nanorods could be easily reusable up to four runs without changing its photocatalytic activity.
doi_str_mv 10.1007/s10854-015-3503-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762089677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3830925361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-733839454856388ee08bf25bf56954cef48463378781bdd9662254572d6f97693</originalsourceid><addsrcrecordid>eNqNkT9rHDEQxUWwIWc7H8CdwE0Kr6P_0pbB2EnA4MYBk0bodke-NXurjUZbXJlvbp3PRQgYUoxGDL_3RuIRcs7ZFWfMfkHOnFYN47qRmslGfSArrm29OPF4RFas1bZRWoiP5ATxmTFmlHQr8ucBtvMYCtCYAegY8hNQ7MJYz91UNoAD0hTpdhnL0OAmzNDTX9M9ncKUsOSlK0sGpDFlmuYyVOUlnTeppC6UMO5eJzRMfa0yrENXIA91Muc0Qy4D4Bk5jmFE-PTWT8nP25uH6-_N3f23H9df75quPrs0VkonW6WV00Y6B8DcOgq9jtq0WnUQlVNGSuus4-u-b40RQittRW9ia00rT8nng29d_XsBLH47YAfjGCZIC3pujWCuNdb-ByqscdZwVdGLf9DntOSpfmRPMdlq53Sl-IHqckLMEP2ch23IO8-Z3-fnD_n5mp_f5-f3zuKgwcpOT5D_cn5X9AJt7p3m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720395885</pqid></control><display><type>article</type><title>Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kadam, A. N. ; Dhabbe, R. S. ; Kokate, M. R. ; Gavade, N. L. ; Waghmare, P. R. ; Garadkar, K. M.</creator><creatorcontrib>Kadam, A. N. ; Dhabbe, R. S. ; Kokate, M. R. ; Gavade, N. L. ; Waghmare, P. R. ; Garadkar, K. M.</creatorcontrib><description>In this article, ZnO nanostructures with diverse morphologies have been synthesized via a simple, rapid and cost effective solid state thermal decomposition method. The as-synthesized ZnO nanostructures were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), UV–Vis. diffuse reflectance spectra (UV–Vis-DRS) and photoluminescence (PL). The XRD patterns and HR-TEM image indicated a hexagonal wurtzite structure of ZnO. The SEM images of ZnO samples show the different morphologies such as nanowire, nanorods, spherical and irregular microsphere at different calcination temperatures. Room temperature PL spectra of the samples exhibited characteristics blue and green emission bands in accordance with calcination temperature. Moreover, photocatalytic as well as antimicrobial activities were evaluated using ZnO synthesized at different calcination temperatures. The effects of calcination temperature, catalyst loading and pH on the photodegradation efficiency were systematically studied. A highest (99 %) photocatalytic activity of ZnO nanorods towards the Acid Green 25 (AG-25) was achieved within 35 min at optimal conditions under UV light. As-synthesized ZnO nanorods are found to be more efficient than TiO 2 (P25) towards the degradation of AG-25. It was found that the antimicrobial activity of ZnO nanorods (13 mm) obtained at 300 °C showed significantly higher inhibition efficiencies than the other samples. The mineralization of AG-25 was confirmed from a reduction of 85 % the chemical oxygen demand within 35 min. In addition, ZnO nanorods could be easily reusable up to four runs without changing its photocatalytic activity.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-015-3503-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antiinfectives and antibacterials ; Calcination ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials Science ; Nanorods ; Nanostructure ; Optical and Electronic Materials ; Photocatalysis ; Scanning electron microscopy ; Silver ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2015-11, Vol.26 (11), p.8367-8379</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-733839454856388ee08bf25bf56954cef48463378781bdd9662254572d6f97693</citedby><cites>FETCH-LOGICAL-c452t-733839454856388ee08bf25bf56954cef48463378781bdd9662254572d6f97693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-015-3503-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-015-3503-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kadam, A. N.</creatorcontrib><creatorcontrib>Dhabbe, R. S.</creatorcontrib><creatorcontrib>Kokate, M. R.</creatorcontrib><creatorcontrib>Gavade, N. L.</creatorcontrib><creatorcontrib>Waghmare, P. R.</creatorcontrib><creatorcontrib>Garadkar, K. M.</creatorcontrib><title>Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this article, ZnO nanostructures with diverse morphologies have been synthesized via a simple, rapid and cost effective solid state thermal decomposition method. The as-synthesized ZnO nanostructures were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), UV–Vis. diffuse reflectance spectra (UV–Vis-DRS) and photoluminescence (PL). The XRD patterns and HR-TEM image indicated a hexagonal wurtzite structure of ZnO. The SEM images of ZnO samples show the different morphologies such as nanowire, nanorods, spherical and irregular microsphere at different calcination temperatures. Room temperature PL spectra of the samples exhibited characteristics blue and green emission bands in accordance with calcination temperature. Moreover, photocatalytic as well as antimicrobial activities were evaluated using ZnO synthesized at different calcination temperatures. The effects of calcination temperature, catalyst loading and pH on the photodegradation efficiency were systematically studied. A highest (99 %) photocatalytic activity of ZnO nanorods towards the Acid Green 25 (AG-25) was achieved within 35 min at optimal conditions under UV light. As-synthesized ZnO nanorods are found to be more efficient than TiO 2 (P25) towards the degradation of AG-25. It was found that the antimicrobial activity of ZnO nanorods (13 mm) obtained at 300 °C showed significantly higher inhibition efficiencies than the other samples. The mineralization of AG-25 was confirmed from a reduction of 85 % the chemical oxygen demand within 35 min. In addition, ZnO nanorods could be easily reusable up to four runs without changing its photocatalytic activity.</description><subject>Antiinfectives and antibacterials</subject><subject>Calcination</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Photocatalysis</subject><subject>Scanning electron microscopy</subject><subject>Silver</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkT9rHDEQxUWwIWc7H8CdwE0Kr6P_0pbB2EnA4MYBk0bodke-NXurjUZbXJlvbp3PRQgYUoxGDL_3RuIRcs7ZFWfMfkHOnFYN47qRmslGfSArrm29OPF4RFas1bZRWoiP5ATxmTFmlHQr8ucBtvMYCtCYAegY8hNQ7MJYz91UNoAD0hTpdhnL0OAmzNDTX9M9ncKUsOSlK0sGpDFlmuYyVOUlnTeppC6UMO5eJzRMfa0yrENXIA91Muc0Qy4D4Bk5jmFE-PTWT8nP25uH6-_N3f23H9df75quPrs0VkonW6WV00Y6B8DcOgq9jtq0WnUQlVNGSuus4-u-b40RQittRW9ia00rT8nng29d_XsBLH47YAfjGCZIC3pujWCuNdb-ByqscdZwVdGLf9DntOSpfmRPMdlq53Sl-IHqckLMEP2ch23IO8-Z3-fnD_n5mp_f5-f3zuKgwcpOT5D_cn5X9AJt7p3m</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Kadam, A. N.</creator><creator>Dhabbe, R. S.</creator><creator>Kokate, M. R.</creator><creator>Gavade, N. L.</creator><creator>Waghmare, P. R.</creator><creator>Garadkar, K. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>7QL</scope><scope>C1K</scope><scope>7U5</scope></search><sort><creationdate>20151101</creationdate><title>Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties</title><author>Kadam, A. N. ; Dhabbe, R. S. ; Kokate, M. R. ; Gavade, N. L. ; Waghmare, P. R. ; Garadkar, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-733839454856388ee08bf25bf56954cef48463378781bdd9662254572d6f97693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Calcination</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Photocatalysis</topic><topic>Scanning electron microscopy</topic><topic>Silver</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadam, A. N.</creatorcontrib><creatorcontrib>Dhabbe, R. S.</creatorcontrib><creatorcontrib>Kokate, M. R.</creatorcontrib><creatorcontrib>Gavade, N. L.</creatorcontrib><creatorcontrib>Waghmare, P. R.</creatorcontrib><creatorcontrib>Garadkar, K. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadam, A. N.</au><au>Dhabbe, R. S.</au><au>Kokate, M. R.</au><au>Gavade, N. L.</au><au>Waghmare, P. R.</au><au>Garadkar, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>26</volume><issue>11</issue><spage>8367</spage><epage>8379</epage><pages>8367-8379</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this article, ZnO nanostructures with diverse morphologies have been synthesized via a simple, rapid and cost effective solid state thermal decomposition method. The as-synthesized ZnO nanostructures were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), UV–Vis. diffuse reflectance spectra (UV–Vis-DRS) and photoluminescence (PL). The XRD patterns and HR-TEM image indicated a hexagonal wurtzite structure of ZnO. The SEM images of ZnO samples show the different morphologies such as nanowire, nanorods, spherical and irregular microsphere at different calcination temperatures. Room temperature PL spectra of the samples exhibited characteristics blue and green emission bands in accordance with calcination temperature. Moreover, photocatalytic as well as antimicrobial activities were evaluated using ZnO synthesized at different calcination temperatures. The effects of calcination temperature, catalyst loading and pH on the photodegradation efficiency were systematically studied. A highest (99 %) photocatalytic activity of ZnO nanorods towards the Acid Green 25 (AG-25) was achieved within 35 min at optimal conditions under UV light. As-synthesized ZnO nanorods are found to be more efficient than TiO 2 (P25) towards the degradation of AG-25. It was found that the antimicrobial activity of ZnO nanorods (13 mm) obtained at 300 °C showed significantly higher inhibition efficiencies than the other samples. The mineralization of AG-25 was confirmed from a reduction of 85 % the chemical oxygen demand within 35 min. In addition, ZnO nanorods could be easily reusable up to four runs without changing its photocatalytic activity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-015-3503-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2015-11, Vol.26 (11), p.8367-8379
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_miscellaneous_1762089677
source SpringerLink Journals - AutoHoldings
subjects Antiinfectives and antibacterials
Calcination
Characterization and Evaluation of Materials
Chemistry and Materials Science
Materials Science
Nanorods
Nanostructure
Optical and Electronic Materials
Photocatalysis
Scanning electron microscopy
Silver
Zinc oxide
title Template free large scale synthesis of multi-shaped ZnO nanostructures for optical, photocatalytical and antibacterial properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template%20free%20large%20scale%20synthesis%20of%20multi-shaped%20ZnO%20nanostructures%20for%20optical,%20photocatalytical%20and%20antibacterial%20properties&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kadam,%20A.%20N.&rft.date=2015-11-01&rft.volume=26&rft.issue=11&rft.spage=8367&rft.epage=8379&rft.pages=8367-8379&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-015-3503-4&rft_dat=%3Cproquest_cross%3E3830925361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720395885&rft_id=info:pmid/&rfr_iscdi=true