Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study
Chemical oxidative polymerization of PPy using APS as an oxidizing agent and mechanical blending were utilized to fabricate PPy-DBSA nanocomposites. DBSA plays a role as both dopant and surfactant in the process of nanocomposite synthesis. In this paper, PPy-DBSA nanocomposites are prepared in m -cr...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2015-11, Vol.26 (11), p.8497-8506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8506 |
---|---|
container_issue | 11 |
container_start_page | 8497 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 26 |
creator | Mane, A. T. Sartale, S. D. Patil, V. B. |
description | Chemical oxidative polymerization of PPy using APS as an oxidizing agent and mechanical blending were utilized to fabricate PPy-DBSA nanocomposites. DBSA plays a role as both dopant and surfactant in the process of nanocomposite synthesis. In this paper, PPy-DBSA nanocomposites are prepared in
m
-cresol solvent and deposited on glass substrate with various concentrations of DBSA (10–50 Wt%). It is confirmed using X-ray diffraction analysis and Raman spectroscopy that DBSA actually interacts with the PPy matrix and structural formation of PPy-DBSA nanocomposites. The surface morphology of PPy doped with DBSA (PPy-DBSA) is observed with field emission scanning electron microscopy and atomic force microscopy. The compositional analysis carried by energy dispersive photoelectron spectroscopy and X-ray photoelectron spectroscopy evidenced the successful formation of PPy-DBSA nanocomposite. The 10 % PPy-DBSA nanocomposite sensors are selective and sensitive towards NO
2
gas so gas response measured at low concentration range of 5–100 ppm. The sensor shows high stability, good reproducibility and recovery time for NO
2
gas. The gas sensing mechanism is proposed schematically and is confirmed using impedance analysis. |
doi_str_mv | 10.1007/s10854-015-3521-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762089548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3830925531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e0bae8ea246077889482f9b28a0addce20fc2a01f1ad8126a72e1ca9f955f4863</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1podu0P6A3QS8biJuRbNlyb_noRyCQQFrozWil0cZBllyNfXD_Qf91tWwPpdCTGHjedzQ8RfGWw3sO0J4TByXrErgsKyl4KZ4VGy7bqqyV-P682EAn27KWQrwsXhE9AUBTV2pT_LqOFs3q2Q7DTwzIaPEuhsEwbQbLtteXDxenzMYJLZuiX6c1peiRbe_v11PmBj_SB0ZrmB-RBjpjNKfFzEvS_oyNMU2P0cf9YA7jXhMjDDSEPdPBsmHMpTqYvHNe7Pq6eOG0J3zz5z0pvn36-PXqS3l79_nm6uK2NFXdzSXCTqNCLeoG2lapLh_oup1QGrS1BgU4IzRwx7VVXDS6FciN7lwnpatVU50U22PvlOKPBWnux4EMeq8DxoV63jYCVCdrldF3_6BPcUkh_y5TAqquAQWZ4kfKpEiU0PVTGkad1p5Df5DTH-X0WU5_kNOLnBHHDGU27DH91fzf0G-M5JLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720396080</pqid></control><display><type>article</type><title>Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study</title><source>SpringerNature Journals</source><creator>Mane, A. T. ; Sartale, S. D. ; Patil, V. B.</creator><creatorcontrib>Mane, A. T. ; Sartale, S. D. ; Patil, V. B.</creatorcontrib><description>Chemical oxidative polymerization of PPy using APS as an oxidizing agent and mechanical blending were utilized to fabricate PPy-DBSA nanocomposites. DBSA plays a role as both dopant and surfactant in the process of nanocomposite synthesis. In this paper, PPy-DBSA nanocomposites are prepared in
m
-cresol solvent and deposited on glass substrate with various concentrations of DBSA (10–50 Wt%). It is confirmed using X-ray diffraction analysis and Raman spectroscopy that DBSA actually interacts with the PPy matrix and structural formation of PPy-DBSA nanocomposites. The surface morphology of PPy doped with DBSA (PPy-DBSA) is observed with field emission scanning electron microscopy and atomic force microscopy. The compositional analysis carried by energy dispersive photoelectron spectroscopy and X-ray photoelectron spectroscopy evidenced the successful formation of PPy-DBSA nanocomposite. The 10 % PPy-DBSA nanocomposite sensors are selective and sensitive towards NO
2
gas so gas response measured at low concentration range of 5–100 ppm. The sensor shows high stability, good reproducibility and recovery time for NO
2
gas. The gas sensing mechanism is proposed schematically and is confirmed using impedance analysis.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-015-3521-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Gas sensors ; Impedance ; Materials Science ; Nanocomposites ; Nitrogen dioxide ; Optical and Electronic Materials ; Photoelectron spectroscopy ; Sensors ; Synthesis ; X-rays</subject><ispartof>Journal of materials science. Materials in electronics, 2015-11, Vol.26 (11), p.8497-8506</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e0bae8ea246077889482f9b28a0addce20fc2a01f1ad8126a72e1ca9f955f4863</citedby><cites>FETCH-LOGICAL-c349t-e0bae8ea246077889482f9b28a0addce20fc2a01f1ad8126a72e1ca9f955f4863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-015-3521-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-015-3521-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Mane, A. T.</creatorcontrib><creatorcontrib>Sartale, S. D.</creatorcontrib><creatorcontrib>Patil, V. B.</creatorcontrib><title>Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Chemical oxidative polymerization of PPy using APS as an oxidizing agent and mechanical blending were utilized to fabricate PPy-DBSA nanocomposites. DBSA plays a role as both dopant and surfactant in the process of nanocomposite synthesis. In this paper, PPy-DBSA nanocomposites are prepared in
m
-cresol solvent and deposited on glass substrate with various concentrations of DBSA (10–50 Wt%). It is confirmed using X-ray diffraction analysis and Raman spectroscopy that DBSA actually interacts with the PPy matrix and structural formation of PPy-DBSA nanocomposites. The surface morphology of PPy doped with DBSA (PPy-DBSA) is observed with field emission scanning electron microscopy and atomic force microscopy. The compositional analysis carried by energy dispersive photoelectron spectroscopy and X-ray photoelectron spectroscopy evidenced the successful formation of PPy-DBSA nanocomposite. The 10 % PPy-DBSA nanocomposite sensors are selective and sensitive towards NO
2
gas so gas response measured at low concentration range of 5–100 ppm. The sensor shows high stability, good reproducibility and recovery time for NO
2
gas. The gas sensing mechanism is proposed schematically and is confirmed using impedance analysis.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Gas sensors</subject><subject>Impedance</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nitrogen dioxide</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectron spectroscopy</subject><subject>Sensors</subject><subject>Synthesis</subject><subject>X-rays</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1r3DAQhk1podu0P6A3QS8biJuRbNlyb_noRyCQQFrozWil0cZBllyNfXD_Qf91tWwPpdCTGHjedzQ8RfGWw3sO0J4TByXrErgsKyl4KZ4VGy7bqqyV-P682EAn27KWQrwsXhE9AUBTV2pT_LqOFs3q2Q7DTwzIaPEuhsEwbQbLtteXDxenzMYJLZuiX6c1peiRbe_v11PmBj_SB0ZrmB-RBjpjNKfFzEvS_oyNMU2P0cf9YA7jXhMjDDSEPdPBsmHMpTqYvHNe7Pq6eOG0J3zz5z0pvn36-PXqS3l79_nm6uK2NFXdzSXCTqNCLeoG2lapLh_oup1QGrS1BgU4IzRwx7VVXDS6FciN7lwnpatVU50U22PvlOKPBWnux4EMeq8DxoV63jYCVCdrldF3_6BPcUkh_y5TAqquAQWZ4kfKpEiU0PVTGkad1p5Df5DTH-X0WU5_kNOLnBHHDGU27DH91fzf0G-M5JLo</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Mane, A. T.</creator><creator>Sartale, S. D.</creator><creator>Patil, V. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>7U5</scope></search><sort><creationdate>20151101</creationdate><title>Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study</title><author>Mane, A. T. ; Sartale, S. D. ; Patil, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e0bae8ea246077889482f9b28a0addce20fc2a01f1ad8126a72e1ca9f955f4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Gas sensors</topic><topic>Impedance</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nitrogen dioxide</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectron spectroscopy</topic><topic>Sensors</topic><topic>Synthesis</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mane, A. T.</creatorcontrib><creatorcontrib>Sartale, S. D.</creatorcontrib><creatorcontrib>Patil, V. B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mane, A. T.</au><au>Sartale, S. D.</au><au>Patil, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>26</volume><issue>11</issue><spage>8497</spage><epage>8506</epage><pages>8497-8506</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Chemical oxidative polymerization of PPy using APS as an oxidizing agent and mechanical blending were utilized to fabricate PPy-DBSA nanocomposites. DBSA plays a role as both dopant and surfactant in the process of nanocomposite synthesis. In this paper, PPy-DBSA nanocomposites are prepared in
m
-cresol solvent and deposited on glass substrate with various concentrations of DBSA (10–50 Wt%). It is confirmed using X-ray diffraction analysis and Raman spectroscopy that DBSA actually interacts with the PPy matrix and structural formation of PPy-DBSA nanocomposites. The surface morphology of PPy doped with DBSA (PPy-DBSA) is observed with field emission scanning electron microscopy and atomic force microscopy. The compositional analysis carried by energy dispersive photoelectron spectroscopy and X-ray photoelectron spectroscopy evidenced the successful formation of PPy-DBSA nanocomposite. The 10 % PPy-DBSA nanocomposite sensors are selective and sensitive towards NO
2
gas so gas response measured at low concentration range of 5–100 ppm. The sensor shows high stability, good reproducibility and recovery time for NO
2
gas. The gas sensing mechanism is proposed schematically and is confirmed using impedance analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-015-3521-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2015-11, Vol.26 (11), p.8497-8506 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762089548 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Gas sensors Impedance Materials Science Nanocomposites Nitrogen dioxide Optical and Electronic Materials Photoelectron spectroscopy Sensors Synthesis X-rays |
title | Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dodecyl%20benzene%20sulfonic%20acid%20(DBSA)%20doped%20polypyrrole%20(PPy)%20films:%20synthesis,%20structural,%20morphological,%20gas%20sensing%20and%20impedance%20study&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Mane,%20A.%20T.&rft.date=2015-11-01&rft.volume=26&rft.issue=11&rft.spage=8497&rft.epage=8506&rft.pages=8497-8506&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-015-3521-2&rft_dat=%3Cproquest_cross%3E3830925531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720396080&rft_id=info:pmid/&rfr_iscdi=true |