Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-01, Vol.7 (40), p.16909-16920
Hauptverfasser: Small, Leo J, Wheeler, David R, Spoerke, Erik D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16920
container_issue 40
container_start_page 16909
container_title Nanoscale
container_volume 7
creator Small, Leo J
Wheeler, David R
Spoerke, Erik D
description Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.
doi_str_mv 10.1039/c5nr02939b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762089158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762089158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-39e0943a02a4195c2c2db40496f11d5da152f27db02242254a7c606a41c528b03</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMozji68QdIlyJWk5tHm6UOvmAYQXRdkjRlImk7Jh1l_PV2Hg4uXd3L4TsHzkHolOArgqm8NrwJGCSVeg8NATOcUprB_u4XbICOYnzHWEgq6CEagGCEUMqHqJiqpp23oV3EpLa1DqqxMfly3Syx3poutGZma2eU98sk9rqZKe3tZfJX7pR23n3bMnFt40wS11b36brlMTqolI_2ZHtH6O3-7nX8mE6eH57GN5PUUJ51KZUWS0YVBsWI5AYMlJphJkVFSMlLRThUkJUaAzAAzlRmBBY9bDjkGtMROt_kzkP7sbCxK2oXjfW-79N3K0gmAOeS8PwfKBDKcp6t0IsNakIbY7BVMQ-uVmFZEFysti_GfPqy3v62h8-2uQtd23KH_o5NfwA1fH9i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721348578</pqid></control><display><type>article</type><title>Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Small, Leo J ; Wheeler, David R ; Spoerke, Erik D</creator><creatorcontrib>Small, Leo J ; Wheeler, David R ; Spoerke, Erik D</creatorcontrib><description>Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr02939b</identifier><identifier>PMID: 26411335</identifier><language>eng</language><publisher>England</publisher><subject>Control systems ; Ion transport ; Locks ; Membranes ; Nanostructure ; Selectivity ; Surface charge ; Transport</subject><ispartof>Nanoscale, 2015-01, Vol.7 (40), p.16909-16920</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-39e0943a02a4195c2c2db40496f11d5da152f27db02242254a7c606a41c528b03</citedby><cites>FETCH-LOGICAL-c357t-39e0943a02a4195c2c2db40496f11d5da152f27db02242254a7c606a41c528b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26411335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Small, Leo J</creatorcontrib><creatorcontrib>Wheeler, David R</creatorcontrib><creatorcontrib>Spoerke, Erik D</creatorcontrib><title>Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.</description><subject>Control systems</subject><subject>Ion transport</subject><subject>Locks</subject><subject>Membranes</subject><subject>Nanostructure</subject><subject>Selectivity</subject><subject>Surface charge</subject><subject>Transport</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMozji68QdIlyJWk5tHm6UOvmAYQXRdkjRlImk7Jh1l_PV2Hg4uXd3L4TsHzkHolOArgqm8NrwJGCSVeg8NATOcUprB_u4XbICOYnzHWEgq6CEagGCEUMqHqJiqpp23oV3EpLa1DqqxMfly3Syx3poutGZma2eU98sk9rqZKe3tZfJX7pR23n3bMnFt40wS11b36brlMTqolI_2ZHtH6O3-7nX8mE6eH57GN5PUUJ51KZUWS0YVBsWI5AYMlJphJkVFSMlLRThUkJUaAzAAzlRmBBY9bDjkGtMROt_kzkP7sbCxK2oXjfW-79N3K0gmAOeS8PwfKBDKcp6t0IsNakIbY7BVMQ-uVmFZEFysti_GfPqy3v62h8-2uQtd23KH_o5NfwA1fH9i</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Small, Leo J</creator><creator>Wheeler, David R</creator><creator>Spoerke, Erik D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity</title><author>Small, Leo J ; Wheeler, David R ; Spoerke, Erik D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-39e0943a02a4195c2c2db40496f11d5da152f27db02242254a7c606a41c528b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Control systems</topic><topic>Ion transport</topic><topic>Locks</topic><topic>Membranes</topic><topic>Nanostructure</topic><topic>Selectivity</topic><topic>Surface charge</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Small, Leo J</creatorcontrib><creatorcontrib>Wheeler, David R</creatorcontrib><creatorcontrib>Spoerke, Erik D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Small, Leo J</au><au>Wheeler, David R</au><au>Spoerke, Erik D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>7</volume><issue>40</issue><spage>16909</spage><epage>16920</epage><pages>16909-16920</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.</abstract><cop>England</cop><pmid>26411335</pmid><doi>10.1039/c5nr02939b</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2015-01, Vol.7 (40), p.16909-16920
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1762089158
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Control systems
Ion transport
Locks
Membranes
Nanostructure
Selectivity
Surface charge
Transport
title Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20membranes%20with%20electrochemically%20switchable,%20chemically%20stabilized%20ionic%20selectivity&rft.jtitle=Nanoscale&rft.au=Small,%20Leo%20J&rft.date=2015-01-01&rft.volume=7&rft.issue=40&rft.spage=16909&rft.epage=16920&rft.pages=16909-16920&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr02939b&rft_dat=%3Cproquest_cross%3E1762089158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721348578&rft_id=info:pmid/26411335&rfr_iscdi=true