New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities

Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-01, Vol.507 (3), p.32053-4
Hauptverfasser: Checchin, M, Martinello, M, Palmieri, V, Rossi, A A, Stark, S, Stivanello, F, Thakur, R K, Vaglio, G Yu R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 3
container_start_page 32053
container_title Journal of physics. Conference series
container_volume 507
creator Checchin, M
Martinello, M
Palmieri, V
Rossi, A A
Stark, S
Stivanello, F
Thakur, R K
Vaglio, G Yu R
description Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.
doi_str_mv 10.1088/1742-6596/507/3/032053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762088673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762088673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BQl48VKbjyZNj7LorrDoRb2GNJ1olm67Jq2iv96UlT04lxl4H2aGB6FLSm4oUSqnZcEyKSqZC1LmPCecEcGP0OwQHB9mpU7RWYwbQniqcoZeH-ELw6dvoLOAXR_w8A5ha1pc92PXmPCNA0QfBzPl4BzYIWLf4TjuINi-a0Y7-O4NS7xc_WBrPv3gIZ6jE2faCBd_fY5e7u-eF6ts_bR8WNyuM8spHTJVWWi4LGrR1NbUjhWCikLJwjJlmSgdrZ1zojCWKgKmsnVVF8awCjgnlXN8jq73e3eh_xghDnrro4W2NR30Y9S0lCw5kiVP6NU_dNOPoUvf6XRJSsFKShMl95QNfYwBnN4Fv00aNCV60q0nk3qyqpNuzfVeN_8FSQRziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576652711</pqid></control><display><type>article</type><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</creator><creatorcontrib>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</creatorcontrib><description>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/507/3/032053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Boundaries ; Boundary layer transition ; Data analysis ; Fluids ; Helium ; Holes ; Kapitza resistance ; Optimization ; Physics ; Strategy ; Superconductivity ; Superfluidity ; Surface resistance ; Temperature gradients ; Thermal resistance ; Transition points</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.507 (3), p.32053-4</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Checchin, M</creatorcontrib><creatorcontrib>Martinello, M</creatorcontrib><creatorcontrib>Palmieri, V</creatorcontrib><creatorcontrib>Rossi, A A</creatorcontrib><creatorcontrib>Stark, S</creatorcontrib><creatorcontrib>Stivanello, F</creatorcontrib><creatorcontrib>Thakur, R K</creatorcontrib><creatorcontrib>Vaglio, G Yu R</creatorcontrib><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><title>Journal of physics. Conference series</title><description>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</description><subject>Anomalies</subject><subject>Boundaries</subject><subject>Boundary layer transition</subject><subject>Data analysis</subject><subject>Fluids</subject><subject>Helium</subject><subject>Holes</subject><subject>Kapitza resistance</subject><subject>Optimization</subject><subject>Physics</subject><subject>Strategy</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Surface resistance</subject><subject>Temperature gradients</subject><subject>Thermal resistance</subject><subject>Transition points</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BQl48VKbjyZNj7LorrDoRb2GNJ1olm67Jq2iv96UlT04lxl4H2aGB6FLSm4oUSqnZcEyKSqZC1LmPCecEcGP0OwQHB9mpU7RWYwbQniqcoZeH-ELw6dvoLOAXR_w8A5ha1pc92PXmPCNA0QfBzPl4BzYIWLf4TjuINi-a0Y7-O4NS7xc_WBrPv3gIZ6jE2faCBd_fY5e7u-eF6ts_bR8WNyuM8spHTJVWWi4LGrR1NbUjhWCikLJwjJlmSgdrZ1zojCWKgKmsnVVF8awCjgnlXN8jq73e3eh_xghDnrro4W2NR30Y9S0lCw5kiVP6NU_dNOPoUvf6XRJSsFKShMl95QNfYwBnN4Fv00aNCV60q0nk3qyqpNuzfVeN_8FSQRziA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Checchin, M</creator><creator>Martinello, M</creator><creator>Palmieri, V</creator><creator>Rossi, A A</creator><creator>Stark, S</creator><creator>Stivanello, F</creator><creator>Thakur, R K</creator><creator>Vaglio, G Yu R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><author>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anomalies</topic><topic>Boundaries</topic><topic>Boundary layer transition</topic><topic>Data analysis</topic><topic>Fluids</topic><topic>Helium</topic><topic>Holes</topic><topic>Kapitza resistance</topic><topic>Optimization</topic><topic>Physics</topic><topic>Strategy</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Surface resistance</topic><topic>Temperature gradients</topic><topic>Thermal resistance</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Checchin, M</creatorcontrib><creatorcontrib>Martinello, M</creatorcontrib><creatorcontrib>Palmieri, V</creatorcontrib><creatorcontrib>Rossi, A A</creatorcontrib><creatorcontrib>Stark, S</creatorcontrib><creatorcontrib>Stivanello, F</creatorcontrib><creatorcontrib>Thakur, R K</creatorcontrib><creatorcontrib>Vaglio, G Yu R</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Checchin, M</au><au>Martinello, M</au><au>Palmieri, V</au><au>Rossi, A A</au><au>Stark, S</au><au>Stivanello, F</au><au>Thakur, R K</au><au>Vaglio, G Yu R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>507</volume><issue>3</issue><spage>32053</spage><epage>4</epage><pages>32053-4</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/507/3/032053</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2014-01, Vol.507 (3), p.32053-4
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1762088673
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anomalies
Boundaries
Boundary layer transition
Data analysis
Fluids
Helium
Holes
Kapitza resistance
Optimization
Physics
Strategy
Superconductivity
Superfluidity
Surface resistance
Temperature gradients
Thermal resistance
Transition points
title New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20evidence%20for%20thermal%20boundary%20resistance%20effects%20in%20superconducting%206%20GHz%20cavities&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Checchin,%20M&rft.date=2014-01-01&rft.volume=507&rft.issue=3&rft.spage=32053&rft.epage=4&rft.pages=32053-4&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/507/3/032053&rft_dat=%3Cproquest_cross%3E1762088673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576652711&rft_id=info:pmid/&rfr_iscdi=true