New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities
Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2014-01, Vol.507 (3), p.32053-4 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 3 |
container_start_page | 32053 |
container_title | Journal of physics. Conference series |
container_volume | 507 |
creator | Checchin, M Martinello, M Palmieri, V Rossi, A A Stark, S Stivanello, F Thakur, R K Vaglio, G Yu R |
description | Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed. |
doi_str_mv | 10.1088/1742-6596/507/3/032053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762088673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762088673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BQl48VKbjyZNj7LorrDoRb2GNJ1olm67Jq2iv96UlT04lxl4H2aGB6FLSm4oUSqnZcEyKSqZC1LmPCecEcGP0OwQHB9mpU7RWYwbQniqcoZeH-ELw6dvoLOAXR_w8A5ha1pc92PXmPCNA0QfBzPl4BzYIWLf4TjuINi-a0Y7-O4NS7xc_WBrPv3gIZ6jE2faCBd_fY5e7u-eF6ts_bR8WNyuM8spHTJVWWi4LGrR1NbUjhWCikLJwjJlmSgdrZ1zojCWKgKmsnVVF8awCjgnlXN8jq73e3eh_xghDnrro4W2NR30Y9S0lCw5kiVP6NU_dNOPoUvf6XRJSsFKShMl95QNfYwBnN4Fv00aNCV60q0nk3qyqpNuzfVeN_8FSQRziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576652711</pqid></control><display><type>article</type><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</creator><creatorcontrib>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</creatorcontrib><description>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/507/3/032053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Boundaries ; Boundary layer transition ; Data analysis ; Fluids ; Helium ; Holes ; Kapitza resistance ; Optimization ; Physics ; Strategy ; Superconductivity ; Superfluidity ; Surface resistance ; Temperature gradients ; Thermal resistance ; Transition points</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.507 (3), p.32053-4</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Checchin, M</creatorcontrib><creatorcontrib>Martinello, M</creatorcontrib><creatorcontrib>Palmieri, V</creatorcontrib><creatorcontrib>Rossi, A A</creatorcontrib><creatorcontrib>Stark, S</creatorcontrib><creatorcontrib>Stivanello, F</creatorcontrib><creatorcontrib>Thakur, R K</creatorcontrib><creatorcontrib>Vaglio, G Yu R</creatorcontrib><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><title>Journal of physics. Conference series</title><description>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</description><subject>Anomalies</subject><subject>Boundaries</subject><subject>Boundary layer transition</subject><subject>Data analysis</subject><subject>Fluids</subject><subject>Helium</subject><subject>Holes</subject><subject>Kapitza resistance</subject><subject>Optimization</subject><subject>Physics</subject><subject>Strategy</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Surface resistance</subject><subject>Temperature gradients</subject><subject>Thermal resistance</subject><subject>Transition points</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BQl48VKbjyZNj7LorrDoRb2GNJ1olm67Jq2iv96UlT04lxl4H2aGB6FLSm4oUSqnZcEyKSqZC1LmPCecEcGP0OwQHB9mpU7RWYwbQniqcoZeH-ELw6dvoLOAXR_w8A5ha1pc92PXmPCNA0QfBzPl4BzYIWLf4TjuINi-a0Y7-O4NS7xc_WBrPv3gIZ6jE2faCBd_fY5e7u-eF6ts_bR8WNyuM8spHTJVWWi4LGrR1NbUjhWCikLJwjJlmSgdrZ1zojCWKgKmsnVVF8awCjgnlXN8jq73e3eh_xghDnrro4W2NR30Y9S0lCw5kiVP6NU_dNOPoUvf6XRJSsFKShMl95QNfYwBnN4Fv00aNCV60q0nk3qyqpNuzfVeN_8FSQRziA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Checchin, M</creator><creator>Martinello, M</creator><creator>Palmieri, V</creator><creator>Rossi, A A</creator><creator>Stark, S</creator><creator>Stivanello, F</creator><creator>Thakur, R K</creator><creator>Vaglio, G Yu R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</title><author>Checchin, M ; Martinello, M ; Palmieri, V ; Rossi, A A ; Stark, S ; Stivanello, F ; Thakur, R K ; Vaglio, G Yu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-89ced364b5dbcabf245154864c28c257f1bfff54ac180ea9cb9b4aa29e3309ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anomalies</topic><topic>Boundaries</topic><topic>Boundary layer transition</topic><topic>Data analysis</topic><topic>Fluids</topic><topic>Helium</topic><topic>Holes</topic><topic>Kapitza resistance</topic><topic>Optimization</topic><topic>Physics</topic><topic>Strategy</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Surface resistance</topic><topic>Temperature gradients</topic><topic>Thermal resistance</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Checchin, M</creatorcontrib><creatorcontrib>Martinello, M</creatorcontrib><creatorcontrib>Palmieri, V</creatorcontrib><creatorcontrib>Rossi, A A</creatorcontrib><creatorcontrib>Stark, S</creatorcontrib><creatorcontrib>Stivanello, F</creatorcontrib><creatorcontrib>Thakur, R K</creatorcontrib><creatorcontrib>Vaglio, G Yu R</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Checchin, M</au><au>Martinello, M</au><au>Palmieri, V</au><au>Rossi, A A</au><au>Stark, S</au><au>Stivanello, F</au><au>Thakur, R K</au><au>Vaglio, G Yu R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>507</volume><issue>3</issue><spage>32053</spage><epage>4</epage><pages>32053-4</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Thermal boundary resistance and, more specifically, Kapitza resistance effects have been often considered as a possible source of "non ideal" superconducting accelerating cavity behavior, through the formation of a temperature difference between the inner cavity superconducting surface and the helium bath. However, in the present literature the general reported assessment is that such effects could be neglected, at least at low or moderate input power. In this communication we present new data on small test bulk Nb 6Ghz cavities, showing that when the cavity surface resistance (or the Q) is plotted as a function of the temperature at constant input power, a clear anomaly occurs at the Helium superfluid transition point Tλ reflecting the abrupt change of the thermal boundary resistance at that temperature. The data analysis shows that this anomaly is consistent with the typically measured values of the thermal boundary (Kapitza) resistance. Implications on the cavity optimization strategy are finally discussed.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/507/3/032053</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2014-01, Vol.507 (3), p.32053-4 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762088673 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anomalies Boundaries Boundary layer transition Data analysis Fluids Helium Holes Kapitza resistance Optimization Physics Strategy Superconductivity Superfluidity Surface resistance Temperature gradients Thermal resistance Transition points |
title | New evidence for thermal boundary resistance effects in superconducting 6 GHz cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20evidence%20for%20thermal%20boundary%20resistance%20effects%20in%20superconducting%206%20GHz%20cavities&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Checchin,%20M&rft.date=2014-01-01&rft.volume=507&rft.issue=3&rft.spage=32053&rft.epage=4&rft.pages=32053-4&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/507/3/032053&rft_dat=%3Cproquest_cross%3E1762088673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576652711&rft_id=info:pmid/&rfr_iscdi=true |