Music Recommendation with Collaborative Filtering for Mobile Services
As the development of the mobile communication and the computational capability of the mobile terminals, more users use their mobile devices to play music. In this work, an online music recommendation system is designed for mobile services, which consists of two modules: offline processing and onlin...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-02, Vol.519-520 (Computer and Information Technology), p.510-515 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | Computer and Information Technology |
container_start_page | 510 |
container_title | Applied Mechanics and Materials |
container_volume | 519-520 |
creator | Chen, Xiao Ming Zhang, Yun Yong Tang, Ya Fei Wei, Jin Wu |
description | As the development of the mobile communication and the computational capability of the mobile terminals, more users use their mobile devices to play music. In this work, an online music recommendation system is designed for mobile services, which consists of two modules: offline processing and online recommendation. The offline module labels all the music into different categories, by which the music items libraries corresponding to the tags are constructed and the rating matrixs are consequently built. The online module integrates the context information, by which the matched rating matrix is retrieved. By using the collaborative filtering model with matrix completion algorithm, the music recommendations that suit the user and the situation are offered. The proposed recommendation system improves the precision of the recommendation by integration the context information of the users, and augments the online computational capability because the matrix scale is reduced by constructing the rating matrices for the music in the different tag libraries. A large number of experiments demonstrate that the proposed system is designed to be robust and effective to the music recommendation and efficient to the online recommendation for the mobile services. |
doi_str_mv | 10.4028/www.scientific.net/AMM.519-520.510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762088269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3826962551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-b2e6b8c3ffcefb7615aaf295e5a141be69db3d3c0557b971e7ea3e682d492e523</originalsourceid><addsrcrecordid>eNqNkNlKAzEUhoMLWJd3GPBGhKlZJpnksta6QIvgch0y6RmNTCc1SS2-vdEKilde_XDOx38OH0KnBA8rTOXZer0eRuugT651dthDOhvNZkNOVMkpzom30IAIQcu6knQb7TPMJOOYKLrztcClYkzsof0YXzAWFankAE1mq-hscQfWLxbQz01yvi_WLj0XY991pvEhj96guHRdguD6p6L1oZj5xnVQ3EN4cxbiIdptTRfh6DsP0OPl5GF8XU5vr27Go2lpGSOpbCiIRlrWthbaphaEG9NSxYEbUpEGhJo3bM4s5rxuVE2gBsNASDqvFAVO2QE62fQug39dQUx64aKF_GcPfhU1qQXFUlKhMnr8B33xq9Dn7zJFFK5ypczU-YaywccYoNXL4BYmvGuC9ad2nbXrH-06a9dZu87addaeE-eSi01JCqaPCezzr1v_r_kADlyTrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719044928</pqid></control><display><type>article</type><title>Music Recommendation with Collaborative Filtering for Mobile Services</title><source>Scientific.net Journals</source><creator>Chen, Xiao Ming ; Zhang, Yun Yong ; Tang, Ya Fei ; Wei, Jin Wu</creator><creatorcontrib>Chen, Xiao Ming ; Zhang, Yun Yong ; Tang, Ya Fei ; Wei, Jin Wu</creatorcontrib><description>As the development of the mobile communication and the computational capability of the mobile terminals, more users use their mobile devices to play music. In this work, an online music recommendation system is designed for mobile services, which consists of two modules: offline processing and online recommendation. The offline module labels all the music into different categories, by which the music items libraries corresponding to the tags are constructed and the rating matrixs are consequently built. The online module integrates the context information, by which the matched rating matrix is retrieved. By using the collaborative filtering model with matrix completion algorithm, the music recommendations that suit the user and the situation are offered. The proposed recommendation system improves the precision of the recommendation by integration the context information of the users, and augments the online computational capability because the matrix scale is reduced by constructing the rating matrices for the music in the different tag libraries. A large number of experiments demonstrate that the proposed system is designed to be robust and effective to the music recommendation and efficient to the online recommendation for the mobile services.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038350192</identifier><identifier>ISBN: 9783038350194</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.519-520.510</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Construction ; Filtering ; Filtration ; Modules ; Music ; Online ; Ratings ; Recommender systems</subject><ispartof>Applied Mechanics and Materials, 2014-02, Vol.519-520 (Computer and Information Technology), p.510-515</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-b2e6b8c3ffcefb7615aaf295e5a141be69db3d3c0557b971e7ea3e682d492e523</citedby><cites>FETCH-LOGICAL-c331t-b2e6b8c3ffcefb7615aaf295e5a141be69db3d3c0557b971e7ea3e682d492e523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3009?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Xiao Ming</creatorcontrib><creatorcontrib>Zhang, Yun Yong</creatorcontrib><creatorcontrib>Tang, Ya Fei</creatorcontrib><creatorcontrib>Wei, Jin Wu</creatorcontrib><title>Music Recommendation with Collaborative Filtering for Mobile Services</title><title>Applied Mechanics and Materials</title><description>As the development of the mobile communication and the computational capability of the mobile terminals, more users use their mobile devices to play music. In this work, an online music recommendation system is designed for mobile services, which consists of two modules: offline processing and online recommendation. The offline module labels all the music into different categories, by which the music items libraries corresponding to the tags are constructed and the rating matrixs are consequently built. The online module integrates the context information, by which the matched rating matrix is retrieved. By using the collaborative filtering model with matrix completion algorithm, the music recommendations that suit the user and the situation are offered. The proposed recommendation system improves the precision of the recommendation by integration the context information of the users, and augments the online computational capability because the matrix scale is reduced by constructing the rating matrices for the music in the different tag libraries. A large number of experiments demonstrate that the proposed system is designed to be robust and effective to the music recommendation and efficient to the online recommendation for the mobile services.</description><subject>Construction</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Modules</subject><subject>Music</subject><subject>Online</subject><subject>Ratings</subject><subject>Recommender systems</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038350192</isbn><isbn>9783038350194</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkNlKAzEUhoMLWJd3GPBGhKlZJpnksta6QIvgch0y6RmNTCc1SS2-vdEKilde_XDOx38OH0KnBA8rTOXZer0eRuugT651dthDOhvNZkNOVMkpzom30IAIQcu6knQb7TPMJOOYKLrztcClYkzsof0YXzAWFankAE1mq-hscQfWLxbQz01yvi_WLj0XY991pvEhj96guHRdguD6p6L1oZj5xnVQ3EN4cxbiIdptTRfh6DsP0OPl5GF8XU5vr27Go2lpGSOpbCiIRlrWthbaphaEG9NSxYEbUpEGhJo3bM4s5rxuVE2gBsNASDqvFAVO2QE62fQug39dQUx64aKF_GcPfhU1qQXFUlKhMnr8B33xq9Dn7zJFFK5ypczU-YaywccYoNXL4BYmvGuC9ad2nbXrH-06a9dZu87addaeE-eSi01JCqaPCezzr1v_r_kADlyTrg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Chen, Xiao Ming</creator><creator>Zhang, Yun Yong</creator><creator>Tang, Ya Fei</creator><creator>Wei, Jin Wu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140201</creationdate><title>Music Recommendation with Collaborative Filtering for Mobile Services</title><author>Chen, Xiao Ming ; Zhang, Yun Yong ; Tang, Ya Fei ; Wei, Jin Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-b2e6b8c3ffcefb7615aaf295e5a141be69db3d3c0557b971e7ea3e682d492e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Construction</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Modules</topic><topic>Music</topic><topic>Online</topic><topic>Ratings</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao Ming</creatorcontrib><creatorcontrib>Zhang, Yun Yong</creatorcontrib><creatorcontrib>Tang, Ya Fei</creatorcontrib><creatorcontrib>Wei, Jin Wu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiao Ming</au><au>Zhang, Yun Yong</au><au>Tang, Ya Fei</au><au>Wei, Jin Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Music Recommendation with Collaborative Filtering for Mobile Services</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>519-520</volume><issue>Computer and Information Technology</issue><spage>510</spage><epage>515</epage><pages>510-515</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038350192</isbn><isbn>9783038350194</isbn><abstract>As the development of the mobile communication and the computational capability of the mobile terminals, more users use their mobile devices to play music. In this work, an online music recommendation system is designed for mobile services, which consists of two modules: offline processing and online recommendation. The offline module labels all the music into different categories, by which the music items libraries corresponding to the tags are constructed and the rating matrixs are consequently built. The online module integrates the context information, by which the matched rating matrix is retrieved. By using the collaborative filtering model with matrix completion algorithm, the music recommendations that suit the user and the situation are offered. The proposed recommendation system improves the precision of the recommendation by integration the context information of the users, and augments the online computational capability because the matrix scale is reduced by constructing the rating matrices for the music in the different tag libraries. A large number of experiments demonstrate that the proposed system is designed to be robust and effective to the music recommendation and efficient to the online recommendation for the mobile services.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.519-520.510</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-02, Vol.519-520 (Computer and Information Technology), p.510-515 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762088269 |
source | Scientific.net Journals |
subjects | Construction Filtering Filtration Modules Music Online Ratings Recommender systems |
title | Music Recommendation with Collaborative Filtering for Mobile Services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Music%20Recommendation%20with%20Collaborative%20Filtering%20for%20Mobile%20Services&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Chen,%20Xiao%20Ming&rft.date=2014-02-01&rft.volume=519-520&rft.issue=Computer%20and%20Information%20Technology&rft.spage=510&rft.epage=515&rft.pages=510-515&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038350192&rft.isbn_list=9783038350194&rft_id=info:doi/10.4028/www.scientific.net/AMM.519-520.510&rft_dat=%3Cproquest_cross%3E3826962551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719044928&rft_id=info:pmid/&rfr_iscdi=true |