Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System

The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2014-10, Vol.66 (10), p.1993-2001
Hauptverfasser: Tasan, C. C., Deng, Y., Pradeep, K. G., Yao, M. J., Springer, H., Raabe, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2001
container_issue 10
container_start_page 1993
container_title JOM (1989)
container_volume 66
creator Tasan, C. C.
Deng, Y.
Pradeep, K. G.
Yao, M. J.
Springer, H.
Raabe, D.
description The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs.
doi_str_mv 10.1007/s11837-014-1133-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762082404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3464440861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6080565dc1e809b4192ba9af7506f9e9f3a08476d991257b6bfb7c013e5774f3</originalsourceid><addsrcrecordid>eNp1kc1q3TAQRk1poWmaB-hO0E0XUaqxJMteBjdpAvmDZC9k31Gugi25ku7Cb9DHrm5vC6WQ1WjQ-T4GTlV9AnYGjKmvCaDlijIQFIBz2rypjkAKTqGV8La8mVBUtLx9X31I6YWVjOjgqPrZh3kJyWUXPPmGC_oN-hFJsORhaxKSx2wGN7m8npZvG-JsfqO3OG6Nd2lOp8T4zd99NBN5iGHBmB2mfUveIulDHy_x1t85cuWet_TC58Ks5Hyawkoe15Rx_li9s2ZKePJnHldPlxdP_RW9uf9-3Z_f0FGAzLRhLZON3IyALesGAV09mM5YJVljO-wsN6wVqtl0HdRSDc1gBzUy4CiVEpYfV18OtUsMP3aYsp5dGnGajMewSxpUU7O2FkwU9PN_6EvYRV-O09AAlwBKdYWCAzXGkFJEq5foZhNXDUzv1eiDGl3U6L0a3ZRMfcikwvpnjP80vxr6BVLkkQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613511779</pqid></control><display><type>article</type><title>Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tasan, C. C. ; Deng, Y. ; Pradeep, K. G. ; Yao, M. J. ; Springer, H. ; Raabe, D.</creator><creatorcontrib>Tasan, C. C. ; Deng, Y. ; Pradeep, K. G. ; Yao, M. J. ; Springer, H. ; Raabe, D.</creatorcontrib><description>The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-014-1133-6</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloy systems ; Alloys ; Chemistry/Food Science ; Cold ; Deformation ; Deformation mechanisms ; Ductility ; Earth Sciences ; Engineering ; Entropy ; Environment ; Face centered cubic lattice ; Homogenization ; Hot rolling ; Investigations ; Mechanical properties ; Microstructure ; Morphology ; Phase stability ; Physics ; Scanning electron microscopy ; Studies ; X-ray diffraction</subject><ispartof>JOM (1989), 2014-10, Vol.66 (10), p.1993-2001</ispartof><rights>The Minerals, Metals &amp; Materials Society 2014</rights><rights>Copyright Springer Science &amp; Business Media Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6080565dc1e809b4192ba9af7506f9e9f3a08476d991257b6bfb7c013e5774f3</citedby><cites>FETCH-LOGICAL-c415t-6080565dc1e809b4192ba9af7506f9e9f3a08476d991257b6bfb7c013e5774f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11837-014-1133-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11837-014-1133-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tasan, C. C.</creatorcontrib><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>Pradeep, K. G.</creatorcontrib><creatorcontrib>Yao, M. J.</creatorcontrib><creatorcontrib>Springer, H.</creatorcontrib><creatorcontrib>Raabe, D.</creatorcontrib><title>Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System</title><title>JOM (1989)</title><addtitle>JOM</addtitle><description>The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs.</description><subject>Alloy systems</subject><subject>Alloys</subject><subject>Chemistry/Food Science</subject><subject>Cold</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Environment</subject><subject>Face centered cubic lattice</subject><subject>Homogenization</subject><subject>Hot rolling</subject><subject>Investigations</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Phase stability</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><subject>X-ray diffraction</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1q3TAQRk1poWmaB-hO0E0XUaqxJMteBjdpAvmDZC9k31Gugi25ku7Cb9DHrm5vC6WQ1WjQ-T4GTlV9AnYGjKmvCaDlijIQFIBz2rypjkAKTqGV8La8mVBUtLx9X31I6YWVjOjgqPrZh3kJyWUXPPmGC_oN-hFJsORhaxKSx2wGN7m8npZvG-JsfqO3OG6Nd2lOp8T4zd99NBN5iGHBmB2mfUveIulDHy_x1t85cuWet_TC58Ks5Hyawkoe15Rx_li9s2ZKePJnHldPlxdP_RW9uf9-3Z_f0FGAzLRhLZON3IyALesGAV09mM5YJVljO-wsN6wVqtl0HdRSDc1gBzUy4CiVEpYfV18OtUsMP3aYsp5dGnGajMewSxpUU7O2FkwU9PN_6EvYRV-O09AAlwBKdYWCAzXGkFJEq5foZhNXDUzv1eiDGl3U6L0a3ZRMfcikwvpnjP80vxr6BVLkkQ0</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Tasan, C. C.</creator><creator>Deng, Y.</creator><creator>Pradeep, K. G.</creator><creator>Yao, M. J.</creator><creator>Springer, H.</creator><creator>Raabe, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20141001</creationdate><title>Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System</title><author>Tasan, C. C. ; Deng, Y. ; Pradeep, K. G. ; Yao, M. J. ; Springer, H. ; Raabe, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6080565dc1e809b4192ba9af7506f9e9f3a08476d991257b6bfb7c013e5774f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloy systems</topic><topic>Alloys</topic><topic>Chemistry/Food Science</topic><topic>Cold</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Environment</topic><topic>Face centered cubic lattice</topic><topic>Homogenization</topic><topic>Hot rolling</topic><topic>Investigations</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Phase stability</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tasan, C. C.</creatorcontrib><creatorcontrib>Deng, Y.</creatorcontrib><creatorcontrib>Pradeep, K. G.</creatorcontrib><creatorcontrib>Yao, M. J.</creatorcontrib><creatorcontrib>Springer, H.</creatorcontrib><creatorcontrib>Raabe, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tasan, C. C.</au><au>Deng, Y.</au><au>Pradeep, K. G.</au><au>Yao, M. J.</au><au>Springer, H.</au><au>Raabe, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System</atitle><jtitle>JOM (1989)</jtitle><stitle>JOM</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>66</volume><issue>10</issue><spage>1993</spage><epage>2001</epage><pages>1993-2001</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>The proposal of configurational entropy maximization to produce massive solid-solution (SS)-strengthened, single-phase high-entropy alloy (HEA) systems has gained much scientific interest. Although most of this interest focuses on the basic role of configurational entropy in SS formability, setting future research directions also requires the overall property benefits of massive SS strengthening to be carefully investigated. To this end, taking the most promising CoCrFeMnNi HEA system as the starting point, we investigate SS formability, deformation mechanisms, and the achievable mechanical property ranges of different compositions and microstructural states. A comparative assessment of the results with respect to room temperature behavior of binary Fe-Mn alloys reveals only limited benefits of massive SS formation. Nevertheless, the results also clarify that the compositional requirements in this alloy system to stabilize the face-centered cubic (fcc) SS are sufficiently relaxed to allow considering nonequiatomic compositions and exploring improved strength–ductility combinations at reduced alloying costs.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11837-014-1133-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2014-10, Vol.66 (10), p.1993-2001
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_miscellaneous_1762082404
source SpringerLink Journals - AutoHoldings
subjects Alloy systems
Alloys
Chemistry/Food Science
Cold
Deformation
Deformation mechanisms
Ductility
Earth Sciences
Engineering
Entropy
Environment
Face centered cubic lattice
Homogenization
Hot rolling
Investigations
Mechanical properties
Microstructure
Morphology
Phase stability
Physics
Scanning electron microscopy
Studies
X-ray diffraction
title Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20Dependence%20of%20Phase%20Stability,%20Deformation%20Mechanisms,%20and%20Mechanical%20Properties%20of%20the%20CoCrFeMnNi%20High-Entropy%20Alloy%20System&rft.jtitle=JOM%20(1989)&rft.au=Tasan,%20C.%20C.&rft.date=2014-10-01&rft.volume=66&rft.issue=10&rft.spage=1993&rft.epage=2001&rft.pages=1993-2001&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-014-1133-6&rft_dat=%3Cproquest_cross%3E3464440861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613511779&rft_id=info:pmid/&rfr_iscdi=true