A theory for the phase behavior of mixtures of active particles
Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether th...
Gespeichert in:
Veröffentlicht in: | Soft matter 2015-01, Vol.11 (40), p.7920-7931 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7931 |
---|---|
container_issue | 40 |
container_start_page | 7920 |
container_title | Soft matter |
container_volume | 11 |
creator | Takatori, Sho C Brady, John F |
description | Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied. |
doi_str_mv | 10.1039/c5sm01792k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762080972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721351848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</originalsourceid><addsrcrecordid>eNqNkEtLw0AURgdRbK1u_AGSpQjRmTuTeaykFF9YcaGCuzAzvaHRxNSZpNh_b6q1a1f3cDl8i0PIMaPnjHJz4bNYU6YMvO-QIVNCpFILvbtl_jogBzG-Ucq1YHKfDEBy4EDVkFyOk3aOTVglRRPWmCzmNmLicG6XZf9qiqQuv9ouYFyz9W257CUb2tJXGA_JXmGriEebOyIv11fPk9t0-nhzNxlPUy8kb1PlDEihubKOzhTMJHBtJDqpuNNGeVu4DCg6qjErKHMKLKBWIgPQzAjPR-T0d3cRms8OY5vXZfRYVfYDmy7mTEmgmhoF_1CB8Yz1iXr17Ff1oYkxYJEvQlnbsMoZzddt80n29PDT9r6XTza7natxtlX_YvJvyO5yTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721351848</pqid></control><display><type>article</type><title>A theory for the phase behavior of mixtures of active particles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Takatori, Sho C ; Brady, John F</creator><creatorcontrib>Takatori, Sho C ; Brady, John F</creatorcontrib><description>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm01792k</identifier><identifier>PMID: 26323207</identifier><language>eng</language><publisher>England</publisher><subject>Balancing ; Collisions ; Computer Simulation ; Criteria ; Diffusion ; Free energy ; Kinetic energy ; Kinetics ; Models, Chemical ; Particle Size ; Phase boundaries ; Phase diagrams ; Temperature ; Thermodynamics</subject><ispartof>Soft matter, 2015-01, Vol.11 (40), p.7920-7931</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</citedby><cites>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26323207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takatori, Sho C</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><title>A theory for the phase behavior of mixtures of active particles</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</description><subject>Balancing</subject><subject>Collisions</subject><subject>Computer Simulation</subject><subject>Criteria</subject><subject>Diffusion</subject><subject>Free energy</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Particle Size</subject><subject>Phase boundaries</subject><subject>Phase diagrams</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLw0AURgdRbK1u_AGSpQjRmTuTeaykFF9YcaGCuzAzvaHRxNSZpNh_b6q1a1f3cDl8i0PIMaPnjHJz4bNYU6YMvO-QIVNCpFILvbtl_jogBzG-Ucq1YHKfDEBy4EDVkFyOk3aOTVglRRPWmCzmNmLicG6XZf9qiqQuv9ouYFyz9W257CUb2tJXGA_JXmGriEebOyIv11fPk9t0-nhzNxlPUy8kb1PlDEihubKOzhTMJHBtJDqpuNNGeVu4DCg6qjErKHMKLKBWIgPQzAjPR-T0d3cRms8OY5vXZfRYVfYDmy7mTEmgmhoF_1CB8Yz1iXr17Ff1oYkxYJEvQlnbsMoZzddt80n29PDT9r6XTza7natxtlX_YvJvyO5yTQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Takatori, Sho C</creator><creator>Brady, John F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>A theory for the phase behavior of mixtures of active particles</title><author>Takatori, Sho C ; Brady, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Balancing</topic><topic>Collisions</topic><topic>Computer Simulation</topic><topic>Criteria</topic><topic>Diffusion</topic><topic>Free energy</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Particle Size</topic><topic>Phase boundaries</topic><topic>Phase diagrams</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takatori, Sho C</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takatori, Sho C</au><au>Brady, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory for the phase behavior of mixtures of active particles</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>11</volume><issue>40</issue><spage>7920</spage><epage>7931</epage><pages>7920-7931</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</abstract><cop>England</cop><pmid>26323207</pmid><doi>10.1039/c5sm01792k</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2015-01, Vol.11 (40), p.7920-7931 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762080972 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Balancing Collisions Computer Simulation Criteria Diffusion Free energy Kinetic energy Kinetics Models, Chemical Particle Size Phase boundaries Phase diagrams Temperature Thermodynamics |
title | A theory for the phase behavior of mixtures of active particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20for%20the%20phase%20behavior%20of%20mixtures%20of%20active%20particles&rft.jtitle=Soft%20matter&rft.au=Takatori,%20Sho%20C&rft.date=2015-01-01&rft.volume=11&rft.issue=40&rft.spage=7920&rft.epage=7931&rft.pages=7920-7931&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm01792k&rft_dat=%3Cproquest_cross%3E1721351848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721351848&rft_id=info:pmid/26323207&rfr_iscdi=true |