A theory for the phase behavior of mixtures of active particles

Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-01, Vol.11 (40), p.7920-7931
Hauptverfasser: Takatori, Sho C, Brady, John F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7931
container_issue 40
container_start_page 7920
container_title Soft matter
container_volume 11
creator Takatori, Sho C
Brady, John F
description Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.
doi_str_mv 10.1039/c5sm01792k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762080972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721351848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</originalsourceid><addsrcrecordid>eNqNkEtLw0AURgdRbK1u_AGSpQjRmTuTeaykFF9YcaGCuzAzvaHRxNSZpNh_b6q1a1f3cDl8i0PIMaPnjHJz4bNYU6YMvO-QIVNCpFILvbtl_jogBzG-Ucq1YHKfDEBy4EDVkFyOk3aOTVglRRPWmCzmNmLicG6XZf9qiqQuv9ouYFyz9W257CUb2tJXGA_JXmGriEebOyIv11fPk9t0-nhzNxlPUy8kb1PlDEihubKOzhTMJHBtJDqpuNNGeVu4DCg6qjErKHMKLKBWIgPQzAjPR-T0d3cRms8OY5vXZfRYVfYDmy7mTEmgmhoF_1CB8Yz1iXr17Ff1oYkxYJEvQlnbsMoZzddt80n29PDT9r6XTza7natxtlX_YvJvyO5yTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721351848</pqid></control><display><type>article</type><title>A theory for the phase behavior of mixtures of active particles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Takatori, Sho C ; Brady, John F</creator><creatorcontrib>Takatori, Sho C ; Brady, John F</creatorcontrib><description>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm01792k</identifier><identifier>PMID: 26323207</identifier><language>eng</language><publisher>England</publisher><subject>Balancing ; Collisions ; Computer Simulation ; Criteria ; Diffusion ; Free energy ; Kinetic energy ; Kinetics ; Models, Chemical ; Particle Size ; Phase boundaries ; Phase diagrams ; Temperature ; Thermodynamics</subject><ispartof>Soft matter, 2015-01, Vol.11 (40), p.7920-7931</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</citedby><cites>FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26323207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takatori, Sho C</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><title>A theory for the phase behavior of mixtures of active particles</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</description><subject>Balancing</subject><subject>Collisions</subject><subject>Computer Simulation</subject><subject>Criteria</subject><subject>Diffusion</subject><subject>Free energy</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>Particle Size</subject><subject>Phase boundaries</subject><subject>Phase diagrams</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLw0AURgdRbK1u_AGSpQjRmTuTeaykFF9YcaGCuzAzvaHRxNSZpNh_b6q1a1f3cDl8i0PIMaPnjHJz4bNYU6YMvO-QIVNCpFILvbtl_jogBzG-Ucq1YHKfDEBy4EDVkFyOk3aOTVglRRPWmCzmNmLicG6XZf9qiqQuv9ouYFyz9W257CUb2tJXGA_JXmGriEebOyIv11fPk9t0-nhzNxlPUy8kb1PlDEihubKOzhTMJHBtJDqpuNNGeVu4DCg6qjErKHMKLKBWIgPQzAjPR-T0d3cRms8OY5vXZfRYVfYDmy7mTEmgmhoF_1CB8Yz1iXr17Ff1oYkxYJEvQlnbsMoZzddt80n29PDT9r6XTza7natxtlX_YvJvyO5yTQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Takatori, Sho C</creator><creator>Brady, John F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>A theory for the phase behavior of mixtures of active particles</title><author>Takatori, Sho C ; Brady, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-7b9264837ab0d72d623896eb673b897cafb520eb08e5f01b72a2e8745228194c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Balancing</topic><topic>Collisions</topic><topic>Computer Simulation</topic><topic>Criteria</topic><topic>Diffusion</topic><topic>Free energy</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>Particle Size</topic><topic>Phase boundaries</topic><topic>Phase diagrams</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takatori, Sho C</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takatori, Sho C</au><au>Brady, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory for the phase behavior of mixtures of active particles</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>11</volume><issue>40</issue><spage>7920</spage><epage>7931</epage><pages>7920-7931</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT that quantifies the particles' kinetic energy and gauges how "hot" or "cold" the system is. For systems far from equilibrium, such as active matter, it is unclear whether the concept of a "temperature" exists and whether self-propelled entities are capable of thermally equilibrating like passive Brownian suspensions. Here we develop a simple mechanical theory to study the phase behavior and "temperature" of a mixture of self-propelled particles. A mixture of active swimmers and passive Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities that get shared upon particle collisions. We derive an explicit equation of state for the active/passive mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria predict in general different phase boundaries, facilitating considerations in simulations and experiments about which ensemble of variables are held fixed and varied.</abstract><cop>England</cop><pmid>26323207</pmid><doi>10.1039/c5sm01792k</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2015-01, Vol.11 (40), p.7920-7931
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1762080972
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Balancing
Collisions
Computer Simulation
Criteria
Diffusion
Free energy
Kinetic energy
Kinetics
Models, Chemical
Particle Size
Phase boundaries
Phase diagrams
Temperature
Thermodynamics
title A theory for the phase behavior of mixtures of active particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20for%20the%20phase%20behavior%20of%20mixtures%20of%20active%20particles&rft.jtitle=Soft%20matter&rft.au=Takatori,%20Sho%20C&rft.date=2015-01-01&rft.volume=11&rft.issue=40&rft.spage=7920&rft.epage=7931&rft.pages=7920-7931&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm01792k&rft_dat=%3Cproquest_cross%3E1721351848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721351848&rft_id=info:pmid/26323207&rfr_iscdi=true