Vertex Stability of Grey Discrete Dynamic Systems
In this paper, the vertex stability problem for a class of grey discrete dynamic systems was investigated by means of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions are obtained which can guarantee the vertex stability of grey discrete dynamic...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-02, Vol.511-512 (Sensors, Mechatronics and Automation), p.1072-1076 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1076 |
---|---|
container_issue | Sensors, Mechatronics and Automation |
container_start_page | 1072 |
container_title | Applied Mechanics and Materials |
container_volume | 511-512 |
creator | Han, Jin Fang Yan, Chen Guang Zhu Jia, Jian |
description | In this paper, the vertex stability problem for a class of grey discrete dynamic systems was investigated by means of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions are obtained which can guarantee the vertex stability of grey discrete dynamic systems. The equivalence relation between the vertex stability and Schur stability of grey discrete dynamic systems , as well as the equivalence relation between the vertex stability for grey discrete dynamic systems and its boundary matrix are established. |
doi_str_mv | 10.4028/www.scientific.net/AMM.511-512.1072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762080848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3826670721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-bc3c680c7d87bdd456bff2ffdb0e465629ec42d999f63fb24cd08414d76dab7a3</originalsourceid><addsrcrecordid>eNqVkMtKAzEUhoMXUGvfYcCNIDPNZSaXZWlrFVpcVN2GTCbBKdOZmqTUeXtTKyjuXISzyHf-8_MBcIdglkPMR_v9PvO6Nm2oba2z1oTReLnMCoTSAuEMQYZPwCWiFKcs5_gUDAXjBBJOCogYPPv6g6kghF6AK-_XENIc5fwSoFfjgvlIVkGVdVOHPulsMnemT6a1184Ek0z7Vm1qnax6H8zGX4Nzqxpvht9zAF7uZ8-Th3TxNH-cjBepJoSHtNREUw41qzgrqyovaGkttrYqoclpQbEwOseVEMJSYkuc6wry2KlitFIlU2QAbo-5W9e974wPchMbmaZRrel2XiJGMeRxh0f05g-67nauje0ihbiAWBARqcmR0q7z3hkrt67eKNdLBOVBs4ya5Y9mGTXLqFlGzfFhedAcU2bHlOBUG4Xot1_H_pHzCWKnjTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718902939</pqid></control><display><type>article</type><title>Vertex Stability of Grey Discrete Dynamic Systems</title><source>Scientific.net Journals</source><creator>Han, Jin Fang ; Yan, Chen Guang ; Zhu Jia, Jian</creator><creatorcontrib>Han, Jin Fang ; Yan, Chen Guang ; Zhu Jia, Jian</creatorcontrib><description>In this paper, the vertex stability problem for a class of grey discrete dynamic systems was investigated by means of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions are obtained which can guarantee the vertex stability of grey discrete dynamic systems. The equivalence relation between the vertex stability and Schur stability of grey discrete dynamic systems , as well as the equivalence relation between the vertex stability for grey discrete dynamic systems and its boundary matrix are established.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038350170</identifier><identifier>ISBN: 3038350176</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.511-512.1072</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Boundaries ; Dynamic tests ; Dynamical systems ; Dynamics ; Eigenvalues ; Equivalence ; Spectra ; Stability</subject><ispartof>Applied Mechanics and Materials, 2014-02, Vol.511-512 (Sensors, Mechatronics and Automation), p.1072-1076</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-bc3c680c7d87bdd456bff2ffdb0e465629ec42d999f63fb24cd08414d76dab7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3006?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Jin Fang</creatorcontrib><creatorcontrib>Yan, Chen Guang</creatorcontrib><creatorcontrib>Zhu Jia, Jian</creatorcontrib><title>Vertex Stability of Grey Discrete Dynamic Systems</title><title>Applied Mechanics and Materials</title><description>In this paper, the vertex stability problem for a class of grey discrete dynamic systems was investigated by means of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions are obtained which can guarantee the vertex stability of grey discrete dynamic systems. The equivalence relation between the vertex stability and Schur stability of grey discrete dynamic systems , as well as the equivalence relation between the vertex stability for grey discrete dynamic systems and its boundary matrix are established.</description><subject>Boundaries</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Spectra</subject><subject>Stability</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038350170</isbn><isbn>3038350176</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkMtKAzEUhoMXUGvfYcCNIDPNZSaXZWlrFVpcVN2GTCbBKdOZmqTUeXtTKyjuXISzyHf-8_MBcIdglkPMR_v9PvO6Nm2oba2z1oTReLnMCoTSAuEMQYZPwCWiFKcs5_gUDAXjBBJOCogYPPv6g6kghF6AK-_XENIc5fwSoFfjgvlIVkGVdVOHPulsMnemT6a1184Ek0z7Vm1qnax6H8zGX4Nzqxpvht9zAF7uZ8-Th3TxNH-cjBepJoSHtNREUw41qzgrqyovaGkttrYqoclpQbEwOseVEMJSYkuc6wry2KlitFIlU2QAbo-5W9e974wPchMbmaZRrel2XiJGMeRxh0f05g-67nauje0ihbiAWBARqcmR0q7z3hkrt67eKNdLBOVBs4ya5Y9mGTXLqFlGzfFhedAcU2bHlOBUG4Xot1_H_pHzCWKnjTs</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Han, Jin Fang</creator><creator>Yan, Chen Guang</creator><creator>Zhu Jia, Jian</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140201</creationdate><title>Vertex Stability of Grey Discrete Dynamic Systems</title><author>Han, Jin Fang ; Yan, Chen Guang ; Zhu Jia, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-bc3c680c7d87bdd456bff2ffdb0e465629ec42d999f63fb24cd08414d76dab7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Spectra</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jin Fang</creatorcontrib><creatorcontrib>Yan, Chen Guang</creatorcontrib><creatorcontrib>Zhu Jia, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jin Fang</au><au>Yan, Chen Guang</au><au>Zhu Jia, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertex Stability of Grey Discrete Dynamic Systems</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>511-512</volume><issue>Sensors, Mechatronics and Automation</issue><spage>1072</spage><epage>1076</epage><pages>1072-1076</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038350170</isbn><isbn>3038350176</isbn><abstract>In this paper, the vertex stability problem for a class of grey discrete dynamic systems was investigated by means of the matrix eigenvalues theory and spectral radius approach. Several necessary and sufficient conditions are obtained which can guarantee the vertex stability of grey discrete dynamic systems. The equivalence relation between the vertex stability and Schur stability of grey discrete dynamic systems , as well as the equivalence relation between the vertex stability for grey discrete dynamic systems and its boundary matrix are established.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.511-512.1072</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-02, Vol.511-512 (Sensors, Mechatronics and Automation), p.1072-1076 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762080848 |
source | Scientific.net Journals |
subjects | Boundaries Dynamic tests Dynamical systems Dynamics Eigenvalues Equivalence Spectra Stability |
title | Vertex Stability of Grey Discrete Dynamic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertex%20Stability%20of%20Grey%20Discrete%20Dynamic%20Systems&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Han,%20Jin%20Fang&rft.date=2014-02-01&rft.volume=511-512&rft.issue=Sensors,%20Mechatronics%20and%20Automation&rft.spage=1072&rft.epage=1076&rft.pages=1072-1076&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038350170&rft.isbn_list=3038350176&rft_id=info:doi/10.4028/www.scientific.net/AMM.511-512.1072&rft_dat=%3Cproquest_cross%3E3826670721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718902939&rft_id=info:pmid/&rfr_iscdi=true |