Simple approach to reinforce hydrogels with cellulose nanocrystals

The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2014-06, Vol.6 (11), p.5934-5943
Hauptverfasser: Yang, Jun, Han, Chun-rui, Xu, Feng, Sun, Run-cang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5943
container_issue 11
container_start_page 5934
container_title Nanoscale
container_volume 6
creator Yang, Jun
Han, Chun-rui
Xu, Feng
Sun, Run-cang
description The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.
doi_str_mv 10.1039/c4nr01214c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762077121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762077121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-cf0c48cb5ee4f1ddbd0454252f15cabb4da1ec27333b20abc4966da1f58b638b3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK1u_AGSpQjReWXSLLX4goILdR1mbu7YSJKJMwnSf--U1rp0dS6Xj8PhI-Sc0WtGRXEDsvOUcSbhgEw5lTQVIueH-1vJCTkJ4ZNSVQgljsmEy1xFppiSu9e67RtMdN97p2GVDC7xWHfWecBkta68-8AmJN_1sEoAm2ZsXMCk050Dvw6DbsIpObIx8GyXM_L-cP-2eEqXL4_Pi9tlCoLTIQVLQc7BZIjSsqoyFZWZ5Bm3LANtjKw0Q-C5EMJwqg3IQqn4s9ncKDE3YkYut71x6deIYSjbOmwm6Q7dGEqWK07zPIr4H824YkIqKSJ6tUXBuxA82rL3dav9umS03Ogt__RG-GLXO5oWqz3661P8ALDsdl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526134643</pqid></control><display><type>article</type><title>Simple approach to reinforce hydrogels with cellulose nanocrystals</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Jun ; Han, Chun-rui ; Xu, Feng ; Sun, Run-cang</creator><creatorcontrib>Yang, Jun ; Han, Chun-rui ; Xu, Feng ; Sun, Run-cang</creatorcontrib><description>The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c4nr01214c</identifier><identifier>PMID: 24763379</identifier><language>eng</language><publisher>England</publisher><subject>Clusters ; Colloids ; Computer numerical control ; Construction ; Crosslinking ; Fracture mechanics ; Hydrogels ; Hysteresis ; Networks</subject><ispartof>Nanoscale, 2014-06, Vol.6 (11), p.5934-5943</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-cf0c48cb5ee4f1ddbd0454252f15cabb4da1ec27333b20abc4966da1f58b638b3</citedby><cites>FETCH-LOGICAL-c320t-cf0c48cb5ee4f1ddbd0454252f15cabb4da1ec27333b20abc4966da1f58b638b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24763379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Han, Chun-rui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Sun, Run-cang</creatorcontrib><title>Simple approach to reinforce hydrogels with cellulose nanocrystals</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.</description><subject>Clusters</subject><subject>Colloids</subject><subject>Computer numerical control</subject><subject>Construction</subject><subject>Crosslinking</subject><subject>Fracture mechanics</subject><subject>Hydrogels</subject><subject>Hysteresis</subject><subject>Networks</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRbK1u_AGSpQjReWXSLLX4goILdR1mbu7YSJKJMwnSf--U1rp0dS6Xj8PhI-Sc0WtGRXEDsvOUcSbhgEw5lTQVIueH-1vJCTkJ4ZNSVQgljsmEy1xFppiSu9e67RtMdN97p2GVDC7xWHfWecBkta68-8AmJN_1sEoAm2ZsXMCk050Dvw6DbsIpObIx8GyXM_L-cP-2eEqXL4_Pi9tlCoLTIQVLQc7BZIjSsqoyFZWZ5Bm3LANtjKw0Q-C5EMJwqg3IQqn4s9ncKDE3YkYut71x6deIYSjbOmwm6Q7dGEqWK07zPIr4H824YkIqKSJ6tUXBuxA82rL3dav9umS03Ogt__RG-GLXO5oWqz3661P8ALDsdl0</recordid><startdate>20140607</startdate><enddate>20140607</enddate><creator>Yang, Jun</creator><creator>Han, Chun-rui</creator><creator>Xu, Feng</creator><creator>Sun, Run-cang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140607</creationdate><title>Simple approach to reinforce hydrogels with cellulose nanocrystals</title><author>Yang, Jun ; Han, Chun-rui ; Xu, Feng ; Sun, Run-cang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-cf0c48cb5ee4f1ddbd0454252f15cabb4da1ec27333b20abc4966da1f58b638b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clusters</topic><topic>Colloids</topic><topic>Computer numerical control</topic><topic>Construction</topic><topic>Crosslinking</topic><topic>Fracture mechanics</topic><topic>Hydrogels</topic><topic>Hysteresis</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Han, Chun-rui</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Sun, Run-cang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jun</au><au>Han, Chun-rui</au><au>Xu, Feng</au><au>Sun, Run-cang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple approach to reinforce hydrogels with cellulose nanocrystals</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-06-07</date><risdate>2014</risdate><volume>6</volume><issue>11</issue><spage>5934</spage><epage>5943</epage><pages>5934-5943</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.</abstract><cop>England</cop><pmid>24763379</pmid><doi>10.1039/c4nr01214c</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2014-06, Vol.6 (11), p.5934-5943
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1762077121
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Clusters
Colloids
Computer numerical control
Construction
Crosslinking
Fracture mechanics
Hydrogels
Hysteresis
Networks
title Simple approach to reinforce hydrogels with cellulose nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20approach%20to%20reinforce%20hydrogels%20with%20cellulose%20nanocrystals&rft.jtitle=Nanoscale&rft.au=Yang,%20Jun&rft.date=2014-06-07&rft.volume=6&rft.issue=11&rft.spage=5934&rft.epage=5943&rft.pages=5934-5943&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c4nr01214c&rft_dat=%3Cproquest_cross%3E1762077121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526134643&rft_id=info:pmid/24763379&rfr_iscdi=true