Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)
super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventiona...
Gespeichert in:
Veröffentlicht in: | Solid state ionics 2015-08, Vol.276, p.56-61 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | |
container_start_page | 56 |
container_title | Solid state ionics |
container_volume | 276 |
creator | Langer, Julia Epp, Viktor Sternad, Michael Wilkening, Martin |
description | super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation. |
doi_str_mv | 10.1016/j.ssi.2015.03.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762075563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762075563</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17620755633</originalsourceid><addsrcrecordid>eNqVzs1OwzAMAOAcQNqAPQA3H9tDS9qqzTjzIw7AgXGfstZhnkJS4kSC5-CFCQgeAMmSf_TZshDnjawb2QwXh5qZ6lY2fS27HJdHYpnnqmpVt16IE-aDlHLo1sNSfF6TMYnJu4rclEacgNOMoVDlPcHjwxMEtPpdxyzAG7D6A0PFMaQxppB1JAcTcbLzniaECvLa9HcTtPXuBeIeYZcCZU4uYjB6RM7lt-W0K_Lfqty4zU_Tlmfi2GjLuPrNp6K4vXm-uqvm4N8Scty-Eo9orXboE28bNbRS9f3Qdf-gX1fJXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762075563</pqid></control><display><type>article</type><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</creator><creatorcontrib>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</creatorcontrib><description>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</description><identifier>ISSN: 0167-2738</identifier><identifier>DOI: 10.1016/j.ssi.2015.03.039</identifier><language>eng</language><subject>Diffusion ; Diffusion layers ; Diffusion rate ; Intercalation ; Line shape ; Lithium ; Nuclear magnetic resonance ; Spin-lattice relaxation</subject><ispartof>Solid state ionics, 2015-08, Vol.276, p.56-61</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Langer, Julia</creatorcontrib><creatorcontrib>Epp, Viktor</creatorcontrib><creatorcontrib>Sternad, Michael</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><title>Solid state ionics</title><description>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</description><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Intercalation</subject><subject>Line shape</subject><subject>Lithium</subject><subject>Nuclear magnetic resonance</subject><subject>Spin-lattice relaxation</subject><issn>0167-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVzs1OwzAMAOAcQNqAPQA3H9tDS9qqzTjzIw7AgXGfstZhnkJS4kSC5-CFCQgeAMmSf_TZshDnjawb2QwXh5qZ6lY2fS27HJdHYpnnqmpVt16IE-aDlHLo1sNSfF6TMYnJu4rclEacgNOMoVDlPcHjwxMEtPpdxyzAG7D6A0PFMaQxppB1JAcTcbLzniaECvLa9HcTtPXuBeIeYZcCZU4uYjB6RM7lt-W0K_Lfqty4zU_Tlmfi2GjLuPrNp6K4vXm-uqvm4N8Scty-Eo9orXboE28bNbRS9f3Qdf-gX1fJXpw</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Langer, Julia</creator><creator>Epp, Viktor</creator><creator>Sternad, Michael</creator><creator>Wilkening, Martin</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><author>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17620755633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Intercalation</topic><topic>Line shape</topic><topic>Lithium</topic><topic>Nuclear magnetic resonance</topic><topic>Spin-lattice relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langer, Julia</creatorcontrib><creatorcontrib>Epp, Viktor</creatorcontrib><creatorcontrib>Sternad, Michael</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langer, Julia</au><au>Epp, Viktor</au><au>Sternad, Michael</au><au>Wilkening, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</atitle><jtitle>Solid state ionics</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>276</volume><spage>56</spage><epage>61</epage><pages>56-61</pages><issn>0167-2738</issn><abstract>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</abstract><doi>10.1016/j.ssi.2015.03.039</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2738 |
ispartof | Solid state ionics, 2015-08, Vol.276, p.56-61 |
issn | 0167-2738 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762075563 |
source | Access via ScienceDirect (Elsevier) |
subjects | Diffusion Diffusion layers Diffusion rate Intercalation Line shape Lithium Nuclear magnetic resonance Spin-lattice relaxation |
title | Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-induced%20super(7)Li%20NMR%20relaxation%20of%20layer-structured%20tin%20disulphide%20-%20Li%20diffusion%20along%20the%20buried%20interfaces%20in%20Li%20sub(0.17)SnS%20sub(2)&rft.jtitle=Solid%20state%20ionics&rft.au=Langer,%20Julia&rft.date=2015-08-01&rft.volume=276&rft.spage=56&rft.epage=61&rft.pages=56-61&rft.issn=0167-2738&rft_id=info:doi/10.1016/j.ssi.2015.03.039&rft_dat=%3Cproquest%3E1762075563%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762075563&rft_id=info:pmid/&rfr_iscdi=true |