Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)

super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state ionics 2015-08, Vol.276, p.56-61
Hauptverfasser: Langer, Julia, Epp, Viktor, Sternad, Michael, Wilkening, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 56
container_title Solid state ionics
container_volume 276
creator Langer, Julia
Epp, Viktor
Sternad, Michael
Wilkening, Martin
description super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.
doi_str_mv 10.1016/j.ssi.2015.03.039
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762075563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762075563</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17620755633</originalsourceid><addsrcrecordid>eNqVzs1OwzAMAOAcQNqAPQA3H9tDS9qqzTjzIw7AgXGfstZhnkJS4kSC5-CFCQgeAMmSf_TZshDnjawb2QwXh5qZ6lY2fS27HJdHYpnnqmpVt16IE-aDlHLo1sNSfF6TMYnJu4rclEacgNOMoVDlPcHjwxMEtPpdxyzAG7D6A0PFMaQxppB1JAcTcbLzniaECvLa9HcTtPXuBeIeYZcCZU4uYjB6RM7lt-W0K_Lfqty4zU_Tlmfi2GjLuPrNp6K4vXm-uqvm4N8Scty-Eo9orXboE28bNbRS9f3Qdf-gX1fJXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762075563</pqid></control><display><type>article</type><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</creator><creatorcontrib>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</creatorcontrib><description>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</description><identifier>ISSN: 0167-2738</identifier><identifier>DOI: 10.1016/j.ssi.2015.03.039</identifier><language>eng</language><subject>Diffusion ; Diffusion layers ; Diffusion rate ; Intercalation ; Line shape ; Lithium ; Nuclear magnetic resonance ; Spin-lattice relaxation</subject><ispartof>Solid state ionics, 2015-08, Vol.276, p.56-61</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Langer, Julia</creatorcontrib><creatorcontrib>Epp, Viktor</creatorcontrib><creatorcontrib>Sternad, Michael</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><title>Solid state ionics</title><description>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</description><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Intercalation</subject><subject>Line shape</subject><subject>Lithium</subject><subject>Nuclear magnetic resonance</subject><subject>Spin-lattice relaxation</subject><issn>0167-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVzs1OwzAMAOAcQNqAPQA3H9tDS9qqzTjzIw7AgXGfstZhnkJS4kSC5-CFCQgeAMmSf_TZshDnjawb2QwXh5qZ6lY2fS27HJdHYpnnqmpVt16IE-aDlHLo1sNSfF6TMYnJu4rclEacgNOMoVDlPcHjwxMEtPpdxyzAG7D6A0PFMaQxppB1JAcTcbLzniaECvLa9HcTtPXuBeIeYZcCZU4uYjB6RM7lt-W0K_Lfqty4zU_Tlmfi2GjLuPrNp6K4vXm-uqvm4N8Scty-Eo9orXboE28bNbRS9f3Qdf-gX1fJXpw</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Langer, Julia</creator><creator>Epp, Viktor</creator><creator>Sternad, Michael</creator><creator>Wilkening, Martin</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</title><author>Langer, Julia ; Epp, Viktor ; Sternad, Michael ; Wilkening, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17620755633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Intercalation</topic><topic>Line shape</topic><topic>Lithium</topic><topic>Nuclear magnetic resonance</topic><topic>Spin-lattice relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langer, Julia</creatorcontrib><creatorcontrib>Epp, Viktor</creatorcontrib><creatorcontrib>Sternad, Michael</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langer, Julia</au><au>Epp, Viktor</au><au>Sternad, Michael</au><au>Wilkening, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)</atitle><jtitle>Solid state ionics</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>276</volume><spage>56</spage><epage>61</epage><pages>56-61</pages><issn>0167-2738</issn><abstract>super(7)Li NMR relaxation has been used to study lithium-ion diffusion in layer-structured SnS sub(2). Keeping the Li intercalation degree in Li sub(x)SnS sub(2) below x = 0.49, the Li ions preferentially occupy sites in the van der Waals gap between the SnS sub(2) sheets. In contrast to conventional NMR spin-lattice relaxation (SLR) rate measurements in the laboratory frame of reference, which are sensitive to rather fast Li exchange processes, with the help of spin-locking SLR NMR slower Li motions were extracted from characteristic diffusion-induced rate peaks. The latter contain information on both Li+ activation energies E sub(a) and Li ion jump rates [tau] super(-1) characterizing the elementary steps of Li+ hopping. Our results point to two different diffusion processes (E sub(a)(I) = 0.38 eV; E sub(a)(II) = 0.28 eV), a slower and a faster one, observable directly after chemical Li insertion. Interestingly, the diffusion behaviour irreversibly changes when the sample has been exposed to temperatures as high as 573 K. Diffusion-induced NMR rates and corresponding line shapes are discussed with respect to an inhomogenous distribution of Li ions in SnS sub(2), which seems to be present directly after Li intercalation.</abstract><doi>10.1016/j.ssi.2015.03.039</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-2738
ispartof Solid state ionics, 2015-08, Vol.276, p.56-61
issn 0167-2738
language eng
recordid cdi_proquest_miscellaneous_1762075563
source Access via ScienceDirect (Elsevier)
subjects Diffusion
Diffusion layers
Diffusion rate
Intercalation
Line shape
Lithium
Nuclear magnetic resonance
Spin-lattice relaxation
title Diffusion-induced super(7)Li NMR relaxation of layer-structured tin disulphide - Li diffusion along the buried interfaces in Li sub(0.17)SnS sub(2)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-induced%20super(7)Li%20NMR%20relaxation%20of%20layer-structured%20tin%20disulphide%20-%20Li%20diffusion%20along%20the%20buried%20interfaces%20in%20Li%20sub(0.17)SnS%20sub(2)&rft.jtitle=Solid%20state%20ionics&rft.au=Langer,%20Julia&rft.date=2015-08-01&rft.volume=276&rft.spage=56&rft.epage=61&rft.pages=56-61&rft.issn=0167-2738&rft_id=info:doi/10.1016/j.ssi.2015.03.039&rft_dat=%3Cproquest%3E1762075563%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762075563&rft_id=info:pmid/&rfr_iscdi=true