Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models

•Derivation of a reduced order metamodel of increased computational efficiency.•Incorporation of model uncertainty via expansion on a Polynomial Chaos (PC) basis.•Coupling of NARX and PC into a new metamodeling approach, termed the PC-NARX method.•The excitation (load) is additionally parameterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2015-09, Vol.157, p.99-113
Hauptverfasser: Spiridonakos, M.D., Chatzi, E.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue
container_start_page 99
container_title Computers & structures
container_volume 157
creator Spiridonakos, M.D.
Chatzi, E.N.
description •Derivation of a reduced order metamodel of increased computational efficiency.•Incorporation of model uncertainty via expansion on a Polynomial Chaos (PC) basis.•Coupling of NARX and PC into a new metamodeling approach, termed the PC-NARX method.•The excitation (load) is additionally parameterized as a model input.•Efficient replacement of refined and computationally costly models is achieved. This paper introduces a metamodeling strategy able to account for the uncertainties in simulating nonlinear, dynamically evolving engineering systems. Polynomial Chaos (PC) expansion is implemented for the development of stochastic metamodels capable of representing the response of numerical models with uncertain input variables. The models employed are of the Nonlinear AutoRegressive with eXogenous (NARX) input form, comprising parameters that are random variables themselves. By expanding these parameters onto an appropriately selected PC basis, the resulting PC-NARX metamodel achieves vast reduction in computational time with sufficient accuracy, yielding a suitable tool for implementations where replacement of computationally costly models is sought.
doi_str_mv 10.1016/j.compstruc.2015.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762075215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579491500139X</els_id><sourcerecordid>1762075215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9c4352fa2052141d38ae4af58efa283220146627458c740ee4a428ae59abe8dc3</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BvPoS-skTW-Py-INVgVR0KcQ0-lulrapSSv035vdFV-FgYGZcz44h5BLBjEDll1vY23b3g9u1DEHlsYQBvgRmbEiLyPORXJMZgAijfJSlKfkzPstAGQCYEY-HnFQra2wMd2a2ppWU6dao2lnu3BC5egePYxONdRPfsDW02Hj7Lje0N42U2dbE156o6ynT4uXd7rH-XNyUqvG48XvnpO325vX5X20er57WC5WkU5EMUSlFknKa8Uh5UywKikUClWnBYZbkfAQSWQZz0Va6FwAhqfgQZOW6hOLSidzcnXg9s5-jegH2RqvsWlUh3b0kuUZhzzA0yDND1LtrPcOa9k70yo3SQZyV6bcyr8y5a5MCWGAB-fi4AzB8Nugk14b7DRWxqEeZGXNv4wf_FWDhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762075215</pqid></control><display><type>article</type><title>Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Spiridonakos, M.D. ; Chatzi, E.N.</creator><creatorcontrib>Spiridonakos, M.D. ; Chatzi, E.N.</creatorcontrib><description>•Derivation of a reduced order metamodel of increased computational efficiency.•Incorporation of model uncertainty via expansion on a Polynomial Chaos (PC) basis.•Coupling of NARX and PC into a new metamodeling approach, termed the PC-NARX method.•The excitation (load) is additionally parameterized as a model input.•Efficient replacement of refined and computationally costly models is achieved. This paper introduces a metamodeling strategy able to account for the uncertainties in simulating nonlinear, dynamically evolving engineering systems. Polynomial Chaos (PC) expansion is implemented for the development of stochastic metamodels capable of representing the response of numerical models with uncertain input variables. The models employed are of the Nonlinear AutoRegressive with eXogenous (NARX) input form, comprising parameters that are random variables themselves. By expanding these parameters onto an appropriately selected PC basis, the resulting PC-NARX metamodel achieves vast reduction in computational time with sufficient accuracy, yielding a suitable tool for implementations where replacement of computationally costly models is sought.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2015.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chaos theory ; Computer simulation ; Dynamic structural response ; Dynamical systems ; Finite element models ; Mathematical models ; Metamodels ; NARX modeling ; Nonlinear dynamics ; Nonlinear hysteretic behavior ; Nonlinearity ; Polynomial chaos expansion ; Polynomials</subject><ispartof>Computers &amp; structures, 2015-09, Vol.157, p.99-113</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9c4352fa2052141d38ae4af58efa283220146627458c740ee4a428ae59abe8dc3</citedby><cites>FETCH-LOGICAL-c348t-9c4352fa2052141d38ae4af58efa283220146627458c740ee4a428ae59abe8dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2015.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Spiridonakos, M.D.</creatorcontrib><creatorcontrib>Chatzi, E.N.</creatorcontrib><title>Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models</title><title>Computers &amp; structures</title><description>•Derivation of a reduced order metamodel of increased computational efficiency.•Incorporation of model uncertainty via expansion on a Polynomial Chaos (PC) basis.•Coupling of NARX and PC into a new metamodeling approach, termed the PC-NARX method.•The excitation (load) is additionally parameterized as a model input.•Efficient replacement of refined and computationally costly models is achieved. This paper introduces a metamodeling strategy able to account for the uncertainties in simulating nonlinear, dynamically evolving engineering systems. Polynomial Chaos (PC) expansion is implemented for the development of stochastic metamodels capable of representing the response of numerical models with uncertain input variables. The models employed are of the Nonlinear AutoRegressive with eXogenous (NARX) input form, comprising parameters that are random variables themselves. By expanding these parameters onto an appropriately selected PC basis, the resulting PC-NARX metamodel achieves vast reduction in computational time with sufficient accuracy, yielding a suitable tool for implementations where replacement of computationally costly models is sought.</description><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Dynamic structural response</subject><subject>Dynamical systems</subject><subject>Finite element models</subject><subject>Mathematical models</subject><subject>Metamodels</subject><subject>NARX modeling</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear hysteretic behavior</subject><subject>Nonlinearity</subject><subject>Polynomial chaos expansion</subject><subject>Polynomials</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BvPoS-skTW-Py-INVgVR0KcQ0-lulrapSSv035vdFV-FgYGZcz44h5BLBjEDll1vY23b3g9u1DEHlsYQBvgRmbEiLyPORXJMZgAijfJSlKfkzPstAGQCYEY-HnFQra2wMd2a2ppWU6dao2lnu3BC5egePYxONdRPfsDW02Hj7Lje0N42U2dbE156o6ynT4uXd7rH-XNyUqvG48XvnpO325vX5X20er57WC5WkU5EMUSlFknKa8Uh5UywKikUClWnBYZbkfAQSWQZz0Va6FwAhqfgQZOW6hOLSidzcnXg9s5-jegH2RqvsWlUh3b0kuUZhzzA0yDND1LtrPcOa9k70yo3SQZyV6bcyr8y5a5MCWGAB-fi4AzB8Nugk14b7DRWxqEeZGXNv4wf_FWDhw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Spiridonakos, M.D.</creator><creator>Chatzi, E.N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models</title><author>Spiridonakos, M.D. ; Chatzi, E.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9c4352fa2052141d38ae4af58efa283220146627458c740ee4a428ae59abe8dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Dynamic structural response</topic><topic>Dynamical systems</topic><topic>Finite element models</topic><topic>Mathematical models</topic><topic>Metamodels</topic><topic>NARX modeling</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear hysteretic behavior</topic><topic>Nonlinearity</topic><topic>Polynomial chaos expansion</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiridonakos, M.D.</creatorcontrib><creatorcontrib>Chatzi, E.N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiridonakos, M.D.</au><au>Chatzi, E.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models</atitle><jtitle>Computers &amp; structures</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>157</volume><spage>99</spage><epage>113</epage><pages>99-113</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>•Derivation of a reduced order metamodel of increased computational efficiency.•Incorporation of model uncertainty via expansion on a Polynomial Chaos (PC) basis.•Coupling of NARX and PC into a new metamodeling approach, termed the PC-NARX method.•The excitation (load) is additionally parameterized as a model input.•Efficient replacement of refined and computationally costly models is achieved. This paper introduces a metamodeling strategy able to account for the uncertainties in simulating nonlinear, dynamically evolving engineering systems. Polynomial Chaos (PC) expansion is implemented for the development of stochastic metamodels capable of representing the response of numerical models with uncertain input variables. The models employed are of the Nonlinear AutoRegressive with eXogenous (NARX) input form, comprising parameters that are random variables themselves. By expanding these parameters onto an appropriately selected PC basis, the resulting PC-NARX metamodel achieves vast reduction in computational time with sufficient accuracy, yielding a suitable tool for implementations where replacement of computationally costly models is sought.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2015.05.002</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2015-09, Vol.157, p.99-113
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_1762075215
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Chaos theory
Computer simulation
Dynamic structural response
Dynamical systems
Finite element models
Mathematical models
Metamodels
NARX modeling
Nonlinear dynamics
Nonlinear hysteretic behavior
Nonlinearity
Polynomial chaos expansion
Polynomials
title Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodeling%20of%20dynamic%20nonlinear%20structural%20systems%20through%20polynomial%20chaos%20NARX%20models&rft.jtitle=Computers%20&%20structures&rft.au=Spiridonakos,%20M.D.&rft.date=2015-09-01&rft.volume=157&rft.spage=99&rft.epage=113&rft.pages=99-113&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2015.05.002&rft_dat=%3Cproquest_cross%3E1762075215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762075215&rft_id=info:pmid/&rft_els_id=S004579491500139X&rfr_iscdi=true