Forward kinematics analysis of parallel mechanisms with restricted workspace

The iterative search method (Newton-Raphson or Quasi-Newton) is an important numerical method for solving the forward kinematics problem of parallel mechanisms. But there may be a failure when the iterative search method solves the forward kinematics problems of a class of mechanisms, whose workspac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2015-10, Vol.229 (14), p.2561-2572
Hauptverfasser: Geng, Mingchao, Zhao, Tieshi, Wang, Chang, Chen, Yuhang, Li, Erwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2572
container_issue 14
container_start_page 2561
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 229
creator Geng, Mingchao
Zhao, Tieshi
Wang, Chang
Chen, Yuhang
Li, Erwei
description The iterative search method (Newton-Raphson or Quasi-Newton) is an important numerical method for solving the forward kinematics problem of parallel mechanisms. But there may be a failure when the iterative search method solves the forward kinematics problems of a class of mechanisms, whose workspace is restricted. The extreme displacement singularity in the limbs is one reason for the workspace restriction. An equivalent method is proposed to remove the extremely displacement singularity in the limbs, and the forward kinematics solutions of two representative 6 degree of freedom mechanisms are given to illustrate the mechanism equivalence. For the coupled fewer degree of freedom mechanisms, the coupled motion is another reason for the workspace restriction. The virtual mechanism method and modified Jacobian matrix method are applied to solve the forward kinematics problems of this class of mechanisms. Numerical examples are given to validate the theories proposed above.
doi_str_mv 10.1177/0954406214560420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762074815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406214560420</sage_id><sourcerecordid>3823357161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-4d26241b2f55eca7a73de26115f89599c6e41b6b8d8d5ecd8f3c04557f277cf53</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqWwM1piYQnYjh_JiCoKSJVYYI5cP6hb54Fvoqr_nkRlQJW4yx3Od47uPQjdUvJAqVKPpBScE8koF5JwRs7QjBFOM1YW-TmaTXI26ZfoCmBLxmFSzNBq2aa9ThbvQuNq3QcDWDc6HiAAbj3udNIxuohrZza6CVAD3od-g5ODPgXTO4v3bdpBp427RhdeR3A3v3uOPpfPH4vXbPX-8rZ4WmUm56zPuGWScbpmXghntNIqt45JSoUvSlGWRrpRlevCFnYEbOFzQ7gQyjOljBf5HN0fc7vUfg_jIVUdwLgYdePaASqqJCOKF3RC707QbTuk8cGJogWlPC_lSJEjZVILkJyvuhRqnQ4VJdVUb3Va72jJjhbQX-5P6H_8D4DpeX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718114396</pqid></control><display><type>article</type><title>Forward kinematics analysis of parallel mechanisms with restricted workspace</title><source>SAGE Complete A-Z List</source><creator>Geng, Mingchao ; Zhao, Tieshi ; Wang, Chang ; Chen, Yuhang ; Li, Erwei</creator><creatorcontrib>Geng, Mingchao ; Zhao, Tieshi ; Wang, Chang ; Chen, Yuhang ; Li, Erwei</creatorcontrib><description>The iterative search method (Newton-Raphson or Quasi-Newton) is an important numerical method for solving the forward kinematics problem of parallel mechanisms. But there may be a failure when the iterative search method solves the forward kinematics problems of a class of mechanisms, whose workspace is restricted. The extreme displacement singularity in the limbs is one reason for the workspace restriction. An equivalent method is proposed to remove the extremely displacement singularity in the limbs, and the forward kinematics solutions of two representative 6 degree of freedom mechanisms are given to illustrate the mechanism equivalence. For the coupled fewer degree of freedom mechanisms, the coupled motion is another reason for the workspace restriction. The virtual mechanism method and modified Jacobian matrix method are applied to solve the forward kinematics problems of this class of mechanisms. Numerical examples are given to validate the theories proposed above.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406214560420</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Constrictions ; Degrees of freedom ; Displacement ; Kinematics ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Matrix ; Mechanical engineering ; Search methods ; Singularities</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2015-10, Vol.229 (14), p.2561-2572</ispartof><rights>IMechE 2014</rights><rights>Copyright SAGE PUBLICATIONS, INC. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-4d26241b2f55eca7a73de26115f89599c6e41b6b8d8d5ecd8f3c04557f277cf53</citedby><cites>FETCH-LOGICAL-c342t-4d26241b2f55eca7a73de26115f89599c6e41b6b8d8d5ecd8f3c04557f277cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406214560420$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406214560420$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Geng, Mingchao</creatorcontrib><creatorcontrib>Zhao, Tieshi</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Chen, Yuhang</creatorcontrib><creatorcontrib>Li, Erwei</creatorcontrib><title>Forward kinematics analysis of parallel mechanisms with restricted workspace</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>The iterative search method (Newton-Raphson or Quasi-Newton) is an important numerical method for solving the forward kinematics problem of parallel mechanisms. But there may be a failure when the iterative search method solves the forward kinematics problems of a class of mechanisms, whose workspace is restricted. The extreme displacement singularity in the limbs is one reason for the workspace restriction. An equivalent method is proposed to remove the extremely displacement singularity in the limbs, and the forward kinematics solutions of two representative 6 degree of freedom mechanisms are given to illustrate the mechanism equivalence. For the coupled fewer degree of freedom mechanisms, the coupled motion is another reason for the workspace restriction. The virtual mechanism method and modified Jacobian matrix method are applied to solve the forward kinematics problems of this class of mechanisms. Numerical examples are given to validate the theories proposed above.</description><subject>Constrictions</subject><subject>Degrees of freedom</subject><subject>Displacement</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Matrix</subject><subject>Mechanical engineering</subject><subject>Search methods</subject><subject>Singularities</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqWwM1piYQnYjh_JiCoKSJVYYI5cP6hb54Fvoqr_nkRlQJW4yx3Od47uPQjdUvJAqVKPpBScE8koF5JwRs7QjBFOM1YW-TmaTXI26ZfoCmBLxmFSzNBq2aa9ThbvQuNq3QcDWDc6HiAAbj3udNIxuohrZza6CVAD3od-g5ODPgXTO4v3bdpBp427RhdeR3A3v3uOPpfPH4vXbPX-8rZ4WmUm56zPuGWScbpmXghntNIqt45JSoUvSlGWRrpRlevCFnYEbOFzQ7gQyjOljBf5HN0fc7vUfg_jIVUdwLgYdePaASqqJCOKF3RC707QbTuk8cGJogWlPC_lSJEjZVILkJyvuhRqnQ4VJdVUb3Va72jJjhbQX-5P6H_8D4DpeX8</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Geng, Mingchao</creator><creator>Zhao, Tieshi</creator><creator>Wang, Chang</creator><creator>Chen, Yuhang</creator><creator>Li, Erwei</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151001</creationdate><title>Forward kinematics analysis of parallel mechanisms with restricted workspace</title><author>Geng, Mingchao ; Zhao, Tieshi ; Wang, Chang ; Chen, Yuhang ; Li, Erwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-4d26241b2f55eca7a73de26115f89599c6e41b6b8d8d5ecd8f3c04557f277cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Constrictions</topic><topic>Degrees of freedom</topic><topic>Displacement</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Matrix</topic><topic>Mechanical engineering</topic><topic>Search methods</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Mingchao</creatorcontrib><creatorcontrib>Zhao, Tieshi</creatorcontrib><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Chen, Yuhang</creatorcontrib><creatorcontrib>Li, Erwei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Mingchao</au><au>Zhao, Tieshi</au><au>Wang, Chang</au><au>Chen, Yuhang</au><au>Li, Erwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward kinematics analysis of parallel mechanisms with restricted workspace</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>229</volume><issue>14</issue><spage>2561</spage><epage>2572</epage><pages>2561-2572</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>The iterative search method (Newton-Raphson or Quasi-Newton) is an important numerical method for solving the forward kinematics problem of parallel mechanisms. But there may be a failure when the iterative search method solves the forward kinematics problems of a class of mechanisms, whose workspace is restricted. The extreme displacement singularity in the limbs is one reason for the workspace restriction. An equivalent method is proposed to remove the extremely displacement singularity in the limbs, and the forward kinematics solutions of two representative 6 degree of freedom mechanisms are given to illustrate the mechanism equivalence. For the coupled fewer degree of freedom mechanisms, the coupled motion is another reason for the workspace restriction. The virtual mechanism method and modified Jacobian matrix method are applied to solve the forward kinematics problems of this class of mechanisms. Numerical examples are given to validate the theories proposed above.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406214560420</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2015-10, Vol.229 (14), p.2561-2572
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_miscellaneous_1762074815
source SAGE Complete A-Z List
subjects Constrictions
Degrees of freedom
Displacement
Kinematics
Mathematical analysis
Mathematical models
Mathematical problems
Matrix
Mechanical engineering
Search methods
Singularities
title Forward kinematics analysis of parallel mechanisms with restricted workspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20kinematics%20analysis%20of%20parallel%20mechanisms%20with%20restricted%20workspace&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Geng,%20Mingchao&rft.date=2015-10-01&rft.volume=229&rft.issue=14&rft.spage=2561&rft.epage=2572&rft.pages=2561-2572&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406214560420&rft_dat=%3Cproquest_cross%3E3823357161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718114396&rft_id=info:pmid/&rft_sage_id=10.1177_0954406214560420&rfr_iscdi=true