Cone-beam local reconstruction based on a Radon inversion transformation

The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2012-11, Vol.21 (11), p.541-546
1. Verfasser: 汪先超 闫镔 李磊 胡国恩
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 11
container_start_page 541
container_title Chinese physics B
container_volume 21
creator 汪先超 闫镔 李磊 胡国恩
description The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.
doi_str_mv 10.1088/1674-1056/21/11/118702
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762074517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44082540</cqvip_id><sourcerecordid>1762074517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WZZPPRoxS1QkEQPYfZbLau7CZtshX8926oFAbegXmeObyE3AJ9AKr1AqSqSqBCLhgsII9WlJ2RGaNCl1zz6pzMTtAluUrpm1IJlPEZWa-Cd2XtcCj6YLEvorPBpzEe7NgFX9SYXFNMCxbv2EzZ-R8XUz6NEX1qQxwwk9fkosU-uZv_nJPP56eP1brcvL28rh43peVQjaVupGLQSgeuFlCLpUbLJDSS8ZYvUS6Fc0gFE4yqplZtuxSWobAwSRSV5nNyf_y7i2F_cGk0Q5es63v0LhySASUntRKgJlQeURtDStG1Zhe7AeOvAWpydSa3YnIrhoGBPLm6Sbz7F7-C3-47vz2ZVUU1ExXlfyYXbJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762074517</pqid></control><display><type>article</type><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><source>IOP Publishing Journals</source><creator>汪先超 闫镔 李磊 胡国恩</creator><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><description>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/21/11/118702</identifier><language>eng</language><subject>Algorithms ; Circularity ; CT重建 ; Filtering ; Filtration ; Inversions ; Projection ; Reconstruction ; Three dimensional ; 反演变换 ; 基础 ; 局部改造 ; 氡 ; 滤波反投影 ; 重建算法 ; 锥束</subject><ispartof>Chinese physics B, 2012-11, Vol.21 (11), p.541-546</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</citedby><cites>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</description><subject>Algorithms</subject><subject>Circularity</subject><subject>CT重建</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Inversions</subject><subject>Projection</subject><subject>Reconstruction</subject><subject>Three dimensional</subject><subject>反演变换</subject><subject>基础</subject><subject>局部改造</subject><subject>氡</subject><subject>滤波反投影</subject><subject>重建算法</subject><subject>锥束</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WZZPPRoxS1QkEQPYfZbLau7CZtshX8926oFAbegXmeObyE3AJ9AKr1AqSqSqBCLhgsII9WlJ2RGaNCl1zz6pzMTtAluUrpm1IJlPEZWa-Cd2XtcCj6YLEvorPBpzEe7NgFX9SYXFNMCxbv2EzZ-R8XUz6NEX1qQxwwk9fkosU-uZv_nJPP56eP1brcvL28rh43peVQjaVupGLQSgeuFlCLpUbLJDSS8ZYvUS6Fc0gFE4yqplZtuxSWobAwSRSV5nNyf_y7i2F_cGk0Q5es63v0LhySASUntRKgJlQeURtDStG1Zhe7AeOvAWpydSa3YnIrhoGBPLm6Sbz7F7-C3-47vz2ZVUU1ExXlfyYXbJQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>汪先超 闫镔 李磊 胡国恩</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><author>汪先超 闫镔 李磊 胡国恩</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Circularity</topic><topic>CT重建</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Inversions</topic><topic>Projection</topic><topic>Reconstruction</topic><topic>Three dimensional</topic><topic>反演变换</topic><topic>基础</topic><topic>局部改造</topic><topic>氡</topic><topic>滤波反投影</topic><topic>重建算法</topic><topic>锥束</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>汪先超 闫镔 李磊 胡国恩</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cone-beam local reconstruction based on a Radon inversion transformation</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>21</volume><issue>11</issue><spage>541</spage><epage>546</epage><pages>541-546</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</abstract><doi>10.1088/1674-1056/21/11/118702</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2012-11, Vol.21 (11), p.541-546
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1762074517
source IOP Publishing Journals
subjects Algorithms
Circularity
CT重建
Filtering
Filtration
Inversions
Projection
Reconstruction
Three dimensional
反演变换
基础
局部改造

滤波反投影
重建算法
锥束
title Cone-beam local reconstruction based on a Radon inversion transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cone-beam%20local%20reconstruction%20based%20on%20a%20Radon%20inversion%20transformation&rft.jtitle=Chinese%20physics%20B&rft.au=%E6%B1%AA%E5%85%88%E8%B6%85%20%E9%97%AB%E9%95%94%20%E6%9D%8E%E7%A3%8A%20%E8%83%A1%E5%9B%BD%E6%81%A9&rft.date=2012-11-01&rft.volume=21&rft.issue=11&rft.spage=541&rft.epage=546&rft.pages=541-546&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/21/11/118702&rft_dat=%3Cproquest_cross%3E1762074517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762074517&rft_id=info:pmid/&rft_cqvip_id=44082540&rfr_iscdi=true