Cone-beam local reconstruction based on a Radon inversion transformation
The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to de...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2012-11, Vol.21 (11), p.541-546 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 11 |
container_start_page | 541 |
container_title | Chinese physics B |
container_volume | 21 |
creator | 汪先超 闫镔 李磊 胡国恩 |
description | The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT. |
doi_str_mv | 10.1088/1674-1056/21/11/118702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762074517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44082540</cqvip_id><sourcerecordid>1762074517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WZZPPRoxS1QkEQPYfZbLau7CZtshX8926oFAbegXmeObyE3AJ9AKr1AqSqSqBCLhgsII9WlJ2RGaNCl1zz6pzMTtAluUrpm1IJlPEZWa-Cd2XtcCj6YLEvorPBpzEe7NgFX9SYXFNMCxbv2EzZ-R8XUz6NEX1qQxwwk9fkosU-uZv_nJPP56eP1brcvL28rh43peVQjaVupGLQSgeuFlCLpUbLJDSS8ZYvUS6Fc0gFE4yqplZtuxSWobAwSRSV5nNyf_y7i2F_cGk0Q5es63v0LhySASUntRKgJlQeURtDStG1Zhe7AeOvAWpydSa3YnIrhoGBPLm6Sbz7F7-C3-47vz2ZVUU1ExXlfyYXbJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762074517</pqid></control><display><type>article</type><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><source>IOP Publishing Journals</source><creator>汪先超 闫镔 李磊 胡国恩</creator><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><description>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/21/11/118702</identifier><language>eng</language><subject>Algorithms ; Circularity ; CT重建 ; Filtering ; Filtration ; Inversions ; Projection ; Reconstruction ; Three dimensional ; 反演变换 ; 基础 ; 局部改造 ; 氡 ; 滤波反投影 ; 重建算法 ; 锥束</subject><ispartof>Chinese physics B, 2012-11, Vol.21 (11), p.541-546</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</citedby><cites>FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</description><subject>Algorithms</subject><subject>Circularity</subject><subject>CT重建</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Inversions</subject><subject>Projection</subject><subject>Reconstruction</subject><subject>Three dimensional</subject><subject>反演变换</subject><subject>基础</subject><subject>局部改造</subject><subject>氡</subject><subject>滤波反投影</subject><subject>重建算法</subject><subject>锥束</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_Qdabl7WZZPPRoxS1QkEQPYfZbLau7CZtshX8926oFAbegXmeObyE3AJ9AKr1AqSqSqBCLhgsII9WlJ2RGaNCl1zz6pzMTtAluUrpm1IJlPEZWa-Cd2XtcCj6YLEvorPBpzEe7NgFX9SYXFNMCxbv2EzZ-R8XUz6NEX1qQxwwk9fkosU-uZv_nJPP56eP1brcvL28rh43peVQjaVupGLQSgeuFlCLpUbLJDSS8ZYvUS6Fc0gFE4yqplZtuxSWobAwSRSV5nNyf_y7i2F_cGk0Q5es63v0LhySASUntRKgJlQeURtDStG1Zhe7AeOvAWpydSa3YnIrhoGBPLm6Sbz7F7-C3-47vz2ZVUU1ExXlfyYXbJQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>汪先超 闫镔 李磊 胡国恩</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20121101</creationdate><title>Cone-beam local reconstruction based on a Radon inversion transformation</title><author>汪先超 闫镔 李磊 胡国恩</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8d6721f6e1eb51b598ac261d623f39a695eea0525207db7ff95c2a5c121f0a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Circularity</topic><topic>CT重建</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Inversions</topic><topic>Projection</topic><topic>Reconstruction</topic><topic>Three dimensional</topic><topic>反演变换</topic><topic>基础</topic><topic>局部改造</topic><topic>氡</topic><topic>滤波反投影</topic><topic>重建算法</topic><topic>锥束</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>汪先超 闫镔 李磊 胡国恩</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>汪先超 闫镔 李磊 胡国恩</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cone-beam local reconstruction based on a Radon inversion transformation</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>21</volume><issue>11</issue><spage>541</spage><epage>546</epage><pages>541-546</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The local reconstruction from truncated projection data is one area of interest in image reconstruction for com- puted tomography (CT), which creates the possibility for dose reduction. In this paper, a filtered-backprojection (FBP) algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local recon- struction in the circular geometry. The algorithm achieves the data filtering in two steps. The first step is the derivative of projections, which acts locally on the data and can thus be carried out accurately even in the presence of data trun- cation. The second step is the nonlocal Hilbert filtering. The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm. Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT), not only it has a comparable ability to restrain truncation artifacts, but also its reconstruction efficiency is improved. It is about twice as fast as that of the ATRACT. Therefore, this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.</abstract><doi>10.1088/1674-1056/21/11/118702</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2012-11, Vol.21 (11), p.541-546 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762074517 |
source | IOP Publishing Journals |
subjects | Algorithms Circularity CT重建 Filtering Filtration Inversions Projection Reconstruction Three dimensional 反演变换 基础 局部改造 氡 滤波反投影 重建算法 锥束 |
title | Cone-beam local reconstruction based on a Radon inversion transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cone-beam%20local%20reconstruction%20based%20on%20a%20Radon%20inversion%20transformation&rft.jtitle=Chinese%20physics%20B&rft.au=%E6%B1%AA%E5%85%88%E8%B6%85%20%E9%97%AB%E9%95%94%20%E6%9D%8E%E7%A3%8A%20%E8%83%A1%E5%9B%BD%E6%81%A9&rft.date=2012-11-01&rft.volume=21&rft.issue=11&rft.spage=541&rft.epage=546&rft.pages=541-546&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/21/11/118702&rft_dat=%3Cproquest_cross%3E1762074517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762074517&rft_id=info:pmid/&rft_cqvip_id=44082540&rfr_iscdi=true |